login
A266033
T(n,k)=Number of nXk integer arrays with each element equal to the number of horizontal and antidiagonal neighbors less than itself.
14
1, 3, 1, 5, 11, 1, 11, 50, 55, 1, 26, 315, 481, 263, 1, 55, 2142, 5594, 4659, 1248, 1, 119, 13796, 121029, 118489, 45361, 5959, 1, 263, 89487, 2045306, 8260441, 2482216, 440405, 28399, 1, 573, 578659, 33026298, 408513208, 576560236, 52086421, 4281953
OFFSET
1,2
COMMENTS
Table starts
.1.......3..........5.............11.................26......................55
.1......11.........50............315...............2142...................13796
.1......55........481...........5594.............121029.................2045306
.1.....263.......4659.........118489............8260441...............408513208
.1....1248......45361........2482216..........576560236.............82171346791
.1....5959.....440405.......52086421........40462691139..........16683384355551
.1...28399....4281953.....1092258910......2834665076351........3378465528248312
.1..135383...41605113....22909266015....198722506983924......684927787385220826
.1..645407..404371841...480473869537..13929598180007373...138808963888717658013
.1.3076736.3929676961.10077157027608.976418236686388550.28134602812633017755802
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 3*a(n-1) +7*a(n-2) +7*a(n-3) -a(n-4)
k=3: a(n) = 5*a(n-1) +46*a(n-2) +6*a(n-3) -72*a(n-4)
k=4: [order 16] for n>17
k=5: [order 38] for n>41
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2) +3*a(n-3) +a(n-4)
n=2: [order 26]
EXAMPLE
Some solutions for n=4 k=4
..0..0..3..1....0..0..1..1....0..0..3..1....0..2..3..0....0..1..1..2
..1..1..0..1....2..1..0..0....2..0..0..0....1..0..0..2....2..0..0..0
..1..0..1..1....2..0..0..1....2..0..4..1....1..4..0..1....2..1..4..1
..0..3..0..0....1..1..3..0....1..2..0..1....0..0..3..0....2..0..0..0
CROSSREFS
Row 1 is A196423.
Sequence in context: A324017 A063853 A219078 * A105064 A073496 A176122
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 20 2015
STATUS
approved