login
A063853
Triangle T(n,k) (n >= 3, k = 1..n-2) read by rows giving number of abstract order types of configurations of n points in n-k dimensions.
6
1, 1, 3, 1, 5, 11, 1, 8, 55, 93, 1, 11, 204, 5083, 2121, 1, 15, 705, 505336, 10775236, 122508, 1, 19, 2293
OFFSET
3,3
LINKS
Lukas Finschi, A Graph Theoretical Approach for Reconstruction and Generation of Oriented Matroids, A dissertation submitted to the Swiss Federal Institute of Technology, Zurich for the degree of Doctor of Mathematics, 2001.
Lukas Finschi and K. Fukuda, Complete combinatorial generation of small point set configurations and hyperplane arrangements, pp. 97-100 in Abstracts 13th Canadian Conference on Computational Geometry (CCCG '01), Waterloo, Aug. 13-15, 2001.
EXAMPLE
Triangle begins:
1;
1,3;
1,5,11;
1,8,55,93;
...
CROSSREFS
Diagonals give A063854, A063855, A063856, A246990, A246991. Row sums give A063857.
Sequence in context: A286910 A093905 A324017 * A219078 A266033 A105064
KEYWORD
nonn,tabl,nice,more
AUTHOR
N. J. A. Sloane, Aug 26 2001
STATUS
approved