OFFSET
1,2
COMMENTS
Tetration (x^^n) is defined as x^^0 = 1 and x^^n = x^(x^^(n - 1)). Another way to put this is that x^^n = x^x^x^...x with n x's.
Conjecture: For any three integers (greater than 1), m, n, and k, such that (2*n - 1)^^m == k (mod (2*n)^m), (2*n - 1)^k == k (mod (2*n)^m). For example, 5^^2 == 29 (mod 6^2) and 5^29 == 29 (mod 6^2).
Conjecture: For n > 1 and m >= 2, floor(((2*n - 1)^^m)/(2*n)) == 2*(n - 1) (mod 2*n). For example, floor((13^^3)/14) == 12 (mod 14) and floor((15^^4)/16) == 14 (mod 16).
Conjecture: For m > 1, where (2*n - 1)^^m == j (mod (2*n)^(m + 1)), A(m + 1,n) = j. For example, A(6,3) = 563 and A(6,4) = 16115; 11^^3 == 563 (mod 12^3) and 11^^3 == 16115 (mod 12^4).
LINKS
Charles W. Trigg, Problem 559, Crux Mathematicorum, page 192, Vol. 7, Jun. 81.
Eric Weisstein's World of Mathematics,Power Tower.
Wikipedia, Tetration.
EXAMPLE
Square array A(m,n) begins:
\n 1 2 3 4 5 6 7 8 ...
m\
1| 1 3 5 7 9 11 13 15 ...
2| 1 11 29 55 89 131 181 239 ...
3| 1 59 29 119 289 563 965 1519 ...
4| 1 59 1109 3703 5289 16115 25661 13807 ...
5| 1 827 3701 7799 45289 57587 332989 669167 ...
6| 1 2875 34805 138871 745289 1799411 4635581 669167 ...
7| 1 15163 128117 1711735 2745289 25687283 49812797 67778031 ...
8| 1 31547 687989 8003191 92745289 419837171 155226301 3557438959 ...
.
Examples of columns in this array:
A(m,1) = A000012(m - 1).
A(m,5) = A306686(m) with a note about how this sequence repeats terms rather than skipping.
Examples of rows in this array:
A(1,n) = A005408(n - 1).
A(2,n) = A082108(n - 1).
PROG
(PARI) tetrmod(b, n, m)=my(t=b); i=0; while(i<=n, i++&&if(i>1, t=lift(Mod(b, m)^t), t)); t
tetrmatrix(lim)= matrix(lim, lim, x, y, tetrmod((2*y)-1, x, (2*y)^x))
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Davis Smith, Mar 28 2019
STATUS
approved