login
A286910
Number of independent vertex sets and vertex covers in the n-antiprism graph.
2
3, 1, 5, 10, 21, 46, 98, 211, 453, 973, 2090, 4489, 9642, 20710, 44483, 95545, 205221, 440794, 946781, 2033590, 4367946, 9381907, 20151389, 43283149, 92967834, 199685521, 428904338, 921243214, 1978737411, 4250128177, 9128846213, 19607839978, 42115660581
OFFSET
0,1
COMMENTS
Sequence extrapolated to n=0 using recurrence.
LINKS
Haoliang Wang, Robert Simon, The Analysis of Synchronous All-to-All Communication Protocols for Wireless Systems, Q2SWinet'18: Proceedings of the 14th ACM International Symposium on QoS and Security for Wireless and Mobile Networks (2018), 39-48.
Eric Weisstein's World of Mathematics, Antiprism Graph
Eric Weisstein's World of Mathematics, Independent Vertex Set
Eric Weisstein's World of Mathematics, Vertex Cover
FORMULA
a(n) = a(n-1) + 2*a(n-2) + a(n-3) for n>=3.
G.f.: (2*x^2 + 2*x - 3)/(x^3 + 2*x^2 + x - 1).
a(n) = n*Sum_{k=1..n} C(2*k,n-k)/k, a(0)=3. - Vladimir Kruchinin, Jun 13 2020
MATHEMATICA
CoefficientList[Series[(- 2 x^2 - 2 x + 3) / (- x^3 - 2 x^2 - x + 1), {x, 0, 40}], x] (* Vincenzo Librandi, May 16 2017 *)
LinearRecurrence[{1, 2, 1}, {3, 1, 5}, 40] (* Vincenzo Librandi, May 16 2017 *)
Table[RootSum[-1 - 2 # - #^2 + #^3 &, #^n &], {n, 20}] (* Eric W. Weisstein, Aug 16 2017 *)
RootSum[-1 - 2 # - #^2 + #^3 &, #^Range[20] &] (* Eric W. Weisstein, Aug 16 2017 *)
PROG
(PARI)
Vec((-2*x^2 - 2*x + 3)/(-x^3 - 2*x^2 - x + 1)+O(x^30))
(Magma) I:=[3, 1, 5]; [n le 3 select I[n] else Self(n-1)+2*Self(n-2)+Self(n-3): n in [1..33]]; // Vincenzo Librandi, May 16 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Andrew Howroyd, May 15 2017
STATUS
approved