login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286911
Number of edge covers in the ladder graph P_2 x P_n.
5
1, 7, 43, 277, 1777, 11407, 73219, 469981, 3016729, 19363879, 124293499, 797819173, 5121067777, 32871277183, 210995228083, 1354343064493, 8693301516841, 55800847838359, 358176305451691, 2299073773191541, 14757369859827601, 94725087867636847
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Edge Cover
Eric Weisstein's World of Mathematics, Ladder Graph
FORMULA
a(n) = 6*a(n-1) + 3*a(n-2) - 2*a(n-3) for n > 3.
G.f.: x*(1-x)*(1+2*x)/(1-6*x-3*x^2+2*x^3).
MATHEMATICA
Table[-RootSum[2 - 3 # - 6 #^2 + #^3 &, -14 #^n - 5 #^(n + 1) + #^(n + 2) &]/30, {n, 20}] (* Eric W. Weisstein, Aug 09 2017 *)
LinearRecurrence[{6, 3, -2}, {1, 7, 43}, 20] (* Eric W. Weisstein, Aug 09 2017 *)
CoefficientList[Series[(1 + x - 2 x^2)/(1 - 6 x - 3 x^2 + 2 x^3), {x, 0, 20}], x] (* Eric W. Weisstein, Aug 09 2017 *)
CROSSREFS
Row 2 of A286912.
Sequence in context: A194779 A126502 A378565 * A343351 A277188 A356559
KEYWORD
nonn
AUTHOR
Andrew Howroyd, May 15 2017
STATUS
approved