login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356559
a(n) = exp(-1) * n! * Sum_{k>=0} Laguerre(n,k) / k!.
0
1, 0, 0, 1, 7, 43, 281, 2056, 17004, 157809, 1622515, 18245335, 222004597, 2898508416, 40343356184, 595578837205, 9287308741827, 152459628788599, 2627373030049669, 47425289731038656, 895098852673047772, 17644305594671247141, 363065584549610882703, 7799894520723959486795
OFFSET
0,5
LINKS
Eric Weisstein's World of Mathematics, Laguerre Polynomial
FORMULA
E.g.f.: exp(exp(-x/(1 - x)) - 1) / (1 - x).
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k)^2 * k! * Bell(n-k).
MATHEMATICA
Table[Exp[-1] n! Sum[LaguerreL[n, k]/k!, {k, 0, Infinity}], {n, 0, 23}]
nmax = 23; CoefficientList[Series[Exp[Exp[-x/(1 - x)] - 1]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[(-1)^(n - k) Binomial[n, k]^2 k! BellB[n - k], {k, 0, n}], {n, 0, 23}]
PROG
(PARI) my(x='x+O('x^30)); Vec(serlaplace(exp(exp(-x/(1 - x)) - 1) / (1 - x))) \\ Michel Marcus, Aug 12 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 12 2022
STATUS
approved