login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277188
The binomial sum a(n) = Sum_{k=0..n}(binomial(n,k)*binomial(n+1,k+1)*binomial(n+2,k+2)).
1
1, 7, 43, 281, 1896, 13112, 92359, 659941, 4769758, 34797170, 255838760, 1893389720, 14091400480, 105385445856, 791504226943, 5966958725021, 45133376297922, 342400478465678, 2604549070175770, 19860078537996958, 151769147958738016
OFFSET
0,2
FORMULA
a(n) = (1/2)*(n+1)^2*(n+2)*hypergeometric({-n,-n,-n},{2,3},-1).
From Vaclav Kotesovec, Oct 04 2016: (Start)
Recurrence: (n+2)^2*(6*n^3 + 3*n^2 - 3*n - 2)*a(n) = (42*n^5 + 147*n^4 + 147*n^3 - 8*n^2 - 60*n - 16)*a(n-1) + 8*(n-1)*n*(6*n^3 + 21*n^2 + 21*n + 4)*a(n-2).
a(n) ~ 2^(3*n+4)/(sqrt(3)*Pi*n).
(End)
MATHEMATICA
Table[Sum[Binomial[n, k]Binomial[n+1, k+1]Binomial[n+2, k+2], {k, 0, n}], {n, 0, 100}]
PROG
(Maxima) makelist((n+1)^2*(n+2)/2*hypergeometric([-n, -n, -n], [2, 3], -1), n, 0, 12);
(PARI) a(n) = sum(k=0, n, (binomial(n, k)*binomial(n+1, k+1)*binomial(n+2, k+2))); \\ Michel Marcus, Oct 04 2016
CROSSREFS
Sequence in context: A378565 A286911 A343351 * A356559 A351757 A338675
KEYWORD
nonn
AUTHOR
Emanuele Munarini, Oct 04 2016
STATUS
approved