OFFSET
0,3
FORMULA
a(n) = [x^n] 1/(1 - x/(1 - x)^2)^n.
a(n) ~ (525 - 32*210^(2/3)/(157*sqrt(105) - 1575)^(1/3) + 4*(210*(157*sqrt(105) - 1575))^(1/3))^(1/6) * ((36 + (1208682 - 28350*sqrt(105))^(1/3)/3 + (6*(7461 + 175*sqrt(105)))^(1/3))^n / (2^(2/3) * 7^(1/3) * sqrt(Pi*n) * 3^(n + 1/6) * 5^(n + 1/3))). - Vaclav Kotesovec, Dec 01 2024
MATHEMATICA
Table[Sum[Binomial[n+k-1, k] * Binomial[n+k-1, 2*k-1], {k, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Dec 01 2024 *)
PROG
(PARI) a(n) = sum(k=0, n, binomial(n+k-1, k)*binomial(n+k-1, n-k));
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Seiichi Manyama, Dec 01 2024
STATUS
approved