The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A011270 Hybrid binary rooted trees with n nodes whose root is labeled by "n". 8
 1, 1, 4, 18, 90, 481, 2690, 15547, 92124, 556664, 3417062, 21248966, 133576724, 847465593, 5419399722, 34895368578, 226050057378, 1472170887755, 9633297762870, 63305402213336, 417612181048826, 2764492667188504, 18358282050480384, 122265756020847943 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..500 Nancy S. S. Gu, Nelson Y. Li, and Toufik Mansour, 2-Binary trees: bijections and related issues, Discr. Math., 308 (2008), 1209-1221. J. M. Pallo, On the listing and random generation of hybrid binary trees, International Journal of Computer Mathematics, 50, 1994, 135-145. Index entries for reversions of series Index entries for sequences related to rooted trees FORMULA G.f.: = 1+x*G(x)^2, where G(x) is g.f. for A007863. Reversion of x - (x/(1 - x))^2 = 0, 1, -1, -2, -3, -4, -5, ... - Olivier Gérard, Jul 05 2001 a(n) = (2/(n+2))*Sum_{j=0...n} binomial(n+j+1, n+1)*binomial(n+j+2, n-j). - Vladimir Kruchinin, Dec 24 2010 G.f. A(x) satisfies: A(x) = 1/(1 - Sum_{k>=1} k*x^k*A(x)^k). - Ilya Gutkovskiy, Apr 10 2018 G.f. A(x) satisfies: A(x) = 1 + Sum_{n>=1} n^(n-1) * x^n*A(x)^(n+1) / (1 + (n-1)*x*A(x))^(n+1). - Paul D. Hanna, Oct 08 2023 a(n) ~ sqrt((35 + (869750 - 5250*sqrt(105))^(1/3) + 5*(14*(497 + 3*sqrt(105)))^(1/3))/525) / (sqrt(Pi) * n^(3/2) * ((2 - 104/(-181 + 105*sqrt(105))^(1/3) + (-181 + 105*sqrt(105))^(1/3))/6)^n). - Vaclav Kotesovec, Oct 08 2023 EXAMPLE G.f. A(x) = 1 + x + 4*x^2 + 18*x^3 + 90*x^4 + 481*x^5 + 2690*x^6 + 15547*x^7 + 92124*x^8 + 556664*x^9 + 3417062*x^10 + ... where x = x*A(x) - x^2*A(x)^2/(1 - x*A(x))^2. MAPLE G:= proc(n) option remember; if n<=0 then 1 else convert(series( (x^2*G(n-1)^3 +x*G(n-1)^2 +1)/ (1-x), x=0, n+1), polynom) fi end: a:= n-> coeff(1+x*G(n-1)^2, x, n): seq(a(n), n=0..20); # Alois P. Heinz, Aug 22 2008 # second Maple program: a:= proc(n) option remember; `if`(n<3, [1, 1, 4][n+1], ( 6*n*(210*n^2-411*n+163)*a(n-1)-4*(n-2)*(7*n-6)*(5*n-3)*a(n-2) +2*(n-3)*(2*n-3)*(35*n-16)*a(n-3))/(5*n*(n+1)*(35*n-51))) end: seq(a(n), n=0..25); # Alois P. Heinz, May 18 2013 MATHEMATICA a[0] = 1; a[n_] := n*HypergeometricPFQ[{1-n, n+1, n+2}, {3/2, 2}, -1/4]; Table[ a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 02 2015, after Vladimir Kruchinin *) CROSSREFS Cf. A011272. Sequence in context: A036749 A218760 A219305 * A367724 A355247 A269450 Adjacent sequences: A011267 A011268 A011269 * A011271 A011272 A011273 KEYWORD nonn AUTHOR pallo(AT)u-bourgogne.fr (Jean Pallo) STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 24 12:27 EDT 2024. Contains 373677 sequences. (Running on oeis4.)