login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of edge covers in the ladder graph P_2 x P_n.
5

%I #14 Jul 04 2023 13:52:48

%S 1,7,43,277,1777,11407,73219,469981,3016729,19363879,124293499,

%T 797819173,5121067777,32871277183,210995228083,1354343064493,

%U 8693301516841,55800847838359,358176305451691,2299073773191541,14757369859827601,94725087867636847

%N Number of edge covers in the ladder graph P_2 x P_n.

%H Andrew Howroyd, <a href="/A286911/b286911.txt">Table of n, a(n) for n = 1..200</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EdgeCover.html">Edge Cover</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LadderGraph.html">Ladder Graph</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (6, 3, -2).

%F a(n) = 6*a(n-1) + 3*a(n-2) - 2*a(n-3) for n > 3.

%F G.f.: x*(1-x)*(1+2*x)/(1-6*x-3*x^2+2*x^3).

%t Table[-RootSum[2 - 3 # - 6 #^2 + #^3 &, -14 #^n - 5 #^(n + 1) + #^(n + 2) &]/30, {n, 20}] (* _Eric W. Weisstein_, Aug 09 2017 *)

%t LinearRecurrence[{6, 3, -2}, {1, 7, 43}, 20] (* _Eric W. Weisstein_, Aug 09 2017 *)

%t CoefficientList[Series[(1 + x - 2 x^2)/(1 - 6 x - 3 x^2 + 2 x^3), {x, 0, 20}], x] (* _Eric W. Weisstein_, Aug 09 2017 *)

%Y Row 2 of A286912.

%Y Cf. A123304, A020866.

%K nonn

%O 1,2

%A _Andrew Howroyd_, May 15 2017