login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array A(m,n) (m>=1, n>=1) read by antidiagonals: A(m,n) = (2*n - 1)^^m mod (2*n)^m (see Comments for definition of ^^).
0

%I #90 Jul 29 2019 13:33:28

%S 1,3,1,5,11,1,7,29,59,1,9,55,29,59,1,11,89,119,1109,827,1,13,131,289,

%T 3703,3701,2875,1,15,181,563,5289,7799,34805,15163,1,17,239,965,16115,

%U 45289,138871,128117,31547,1,19,305,1519,25661,57587,745289,1711735,687989,97083,1

%N Square array A(m,n) (m>=1, n>=1) read by antidiagonals: A(m,n) = (2*n - 1)^^m mod (2*n)^m (see Comments for definition of ^^).

%C Tetration (x^^n) is defined as x^^0 = 1 and x^^n = x^(x^^(n - 1)). Another way to put this is that x^^n = x^x^x^...x with n x's.

%C Conjecture: For any three integers (greater than 1), m, n, and k, such that (2*n - 1)^^m == k (mod (2*n)^m), (2*n - 1)^k == k (mod (2*n)^m). For example, 5^^2 == 29 (mod 6^2) and 5^29 == 29 (mod 6^2).

%C Conjecture: For n > 1 and m >= 2, floor(((2*n - 1)^^m)/(2*n)) == 2*(n - 1) (mod 2*n). For example, floor((13^^3)/14) == 12 (mod 14) and floor((15^^4)/16) == 14 (mod 16).

%C Conjecture: For m > 1, where (2*n - 1)^^m == j (mod (2*n)^(m + 1)), A(m + 1,n) = j. For example, A(6,3) = 563 and A(6,4) = 16115; 11^^3 == 563 (mod 12^3) and 11^^3 == 16115 (mod 12^4).

%H Charles W. Trigg, <a href="https://cms.math.ca/crux/backfile/Crux_v7n06_Jun.pdf">Problem 559</a>, Crux Mathematicorum, page 192, Vol. 7, Jun. 81.

%H Eric Weisstein's World of Mathematics,<a href="http://mathworld.wolfram.com/PowerTower.html">Power Tower</a>.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Tetration">Tetration</a>.

%e Square array A(m,n) begins:

%e \n 1 2 3 4 5 6 7 8 ...

%e m\

%e 1| 1 3 5 7 9 11 13 15 ...

%e 2| 1 11 29 55 89 131 181 239 ...

%e 3| 1 59 29 119 289 563 965 1519 ...

%e 4| 1 59 1109 3703 5289 16115 25661 13807 ...

%e 5| 1 827 3701 7799 45289 57587 332989 669167 ...

%e 6| 1 2875 34805 138871 745289 1799411 4635581 669167 ...

%e 7| 1 15163 128117 1711735 2745289 25687283 49812797 67778031 ...

%e 8| 1 31547 687989 8003191 92745289 419837171 155226301 3557438959 ...

%e .

%e Examples of columns in this array:

%e A(m,1) = A000012(m - 1).

%e A(m,5) = A306686(m) with a note about how this sequence repeats terms rather than skipping.

%e Examples of rows in this array:

%e A(1,n) = A005408(n - 1).

%e A(2,n) = A082108(n - 1).

%o (PARI) tetrmod(b,n,m)=my(t=b);i=0;while(i<=n, i++&&if(i>1, t=lift(Mod(b,m)^t), t)); t

%o tetrmatrix(lim)= matrix(lim,lim,x,y,tetrmod((2*y)-1,x,(2*y)^x))

%Y Cf. A000012, A005408, A082108, A306686.

%K nonn,tabl

%O 1,2

%A _Davis Smith_, Mar 28 2019