OFFSET
0,3
FORMULA
Conjecture: A(n,0) = A003319(n+2). - Mikhail Kurkov, Oct 27 2024
A(n,k) = A(n,k-1) - k*A(n-1,k) + (k+2)*A(n-1,k+1) with A(n,0) = A(n-1,0) + 2*A(n-1,1), A(0,k) = 1. - Mikhail Kurkov, Nov 23 2024
EXAMPLE
Array begins:
===========================================================
n\k| 0 1 2 3 4 5 6 ...
---+-------------------------------------------------------
0 | 1 1 1 1 1 1 1 ...
1 | 3 5 7 9 11 13 15 ...
2 | 13 29 51 79 113 153 199 ...
3 | 71 195 409 737 1203 1831 2645 ...
4 | 461 1493 3623 7427 13601 22961 36443 ...
5 | 3447 12823 35285 81009 164371 304667 526833 ...
6 | 29093 122125 375591 954419 2124937 4289433 8025755 ...
...
PROG
(PARI)
A(m, n=m)={my(r=vectorv(m+1), v=vector(n+m+1, k, 1)); r[1] = v[1..n+1];
for(i=1, m, v=vector(#v-1, k, (k+1)*v[k+1] + sum(j=1, k, v[j])); r[1+i] = v[1..n+1]); Mat(r)}
{ A(6) }
CROSSREFS
KEYWORD
AUTHOR
Mikhail Kurkov, Feb 17 2024
STATUS
approved