login
A348114
Irregular triangle read by rows: T(n, k) is the number of chains of subspaces 0 < V_1 < ... < V_r = (F_3)^n, counted up to coordinate permutation, with dimension increments given by (any fixed permutation of) the parts of the k-th partition of n in Abramowitz-Stegun order.
2
1, 1, 3, 1, 5, 15, 1, 8, 16, 49, 154, 1, 11, 39, 126, 288, 964, 3275, 1, 15, 87, 168, 291, 1412, 3600, 4957, 12865, 46400, 168862, 1, 19, 176, 644, 608, 6101, 14001, 38996, 22294, 146064, 418072, 549894, 1586761, 6045724, 23115063, 1, 24, 338, 2348, 4849, 1195, 24329
OFFSET
1,3
COMMENTS
A permutation on the list of dimension increments does not modify the number of subspace chains.
The length of the enumerated chains is r = len(L), where L is the parameter partition.
FORMULA
If the k-th partition of n in A-St is L = (a, n-a), then T(n, k) = A347970(n, a) = A347970(n, n-a).
EXAMPLE
For L = (1, 1, 1), there are 52 (= 13 * 4) = A347486(3, 3) subspace chains 0 < V_1 < V_2 < (F_3)^3.
The permutations of the three coordinates classify them into 15 = T(3, 3) orbits.
T(3, 2) = 5 refers to partition (2, 1) and counts subspace chains in (F_3)^2 with dimensions (0, 2, 3), i.e. 2-dimensional subspaces. It also counts chains with dimensions (0, 1, 3), i.e. 1-dimensional subspaces.
Triangle begins:
k: 1 2 3 4 5 6 7
------------------------
n=1: 1
n=2: 1 3
n=3: 1 5 15
n=4: 1 8 16 49 154
n=5: 1 11 39 126 288 964 3275
CROSSREFS
Sequence in context: A370380 A091623 A215474 * A309498 A059616 A125053
KEYWORD
nonn,tabf
AUTHOR
Álvar Ibeas, Oct 01 2021
STATUS
approved