OFFSET
0,5
COMMENTS
Columns can be computed by a method analogous to that of Fripertinger for isometry classes of linear codes, disallowing scalar transformation of individual coordinates.
LINKS
Álvar Ibeas, Entries up to T(16, 7)
H. Fripertinger, Isometry classes of codes
H. Fripertinger, Number of the isometry classes of all ternary (n,k)-codes
Álvar Ibeas, Column k=2 up to n=100
Álvar Ibeas, Column k=3 up to n=100
Álvar Ibeas, Column k=4 up to n=100
Álvar Ibeas, Column k=5 up to n=100
Álvar Ibeas, Column k=6 up to n=100
Álvar Ibeas, Column k=7 up to n=100
EXAMPLE
Triangle begins:
k: 0 1 2 3 4 5 6 7
-----------------------------
n=0: 1
n=1: 1 1
n=2: 1 3 1
n=3: 1 5 5 1
n=4: 1 8 16 8 1
n=5: 1 11 39 39 11 1
n=6: 1 15 87 168 87 15 1
n=7: 1 19 176 644 644 176 19 1
There are 4 = A022167(2, 1) one-dimensional subspaces in (F_3)^2, namely, those generated by (0, 1), (1, 0), (1, 1), and (1, 2). The first two are related by coordinate swap, while the remaining two are invariant. Hence, T(2, 1) = 3.
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Álvar Ibeas, Sep 21 2021
STATUS
approved