login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082545
a(n) = (2*n)! * Sum_{k=0..n} binomial(n,k)/(n+k)!.
8
1, 3, 21, 229, 3393, 63591, 1442173, 38398641, 1174226049, 40558249963, 1561734494661, 66335687785533, 3081211226192641, 155369391396527439, 8452596370942940973, 493494408990278911561, 30777323181433121541633, 2042075395611656190239571
OFFSET
0,2
LINKS
FORMULA
a(n) = n!*LaguerreL(n, n, -1).
n*a(n) + (n^3-5*n^2-n+2)*a(n-1) - 2*(n+1)*(2*n-3)*(n-1)^2*a(n-2) = 0. - Vladeta Jovovic, Jul 16 2004
E.g.f.: exp((-2*x+1-(1-4*x)^(1/2))/(2*x))/(1-4*x)^(1/2). - Mark van Hoeij, Oct 31 2011
a(n) ~ n^n*2^(2*n+1/2)/exp(n-1). - Vaclav Kotesovec, Sep 27 2012
a(n) = n!*binomial(2*n,n)*hypergeom([-n], [1+n], -1). - Peter Luschny, May 04 2017
a(n) = n! * [x^n] exp(x/(1 - x))/(1 - x)^(n+1). - Ilya Gutkovskiy, Nov 21 2017
MAPLE
a:= n-> simplify(n!*LaguerreL(n$2, -1)):
seq(a(n), n=0..20); # Alois P. Heinz, Jul 27 2017
MATHEMATICA
Table[n!*LaguerreL[n, n, -1], {n, 0, 17}] (* Jean-François Alcover, Jun 04 2019 *)
PROG
(PARI) a(n) = sum(k=0, n, k!*binomial(n, k)*binomial(2*n, k)); \\ Seiichi Manyama, May 01 2021
(PARI) a(n) = n!*pollaguerre(n, n, -1); \\ Seiichi Manyama, May 01 2021
(Magma) [Factorial(n)*Evaluate(LaguerrePolynomial(n, n), -1): n in [0..40]]; // G. C. Greubel, Aug 11 2022
(SageMath) [factorial(n)*gen_laguerre(n, n, -1) for n in (0..40)] # G. C. Greubel, Aug 11 2022
CROSSREFS
Sequence in context: A354263 A369795 A113663 * A074638 A332708 A097329
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, May 11 2003
STATUS
approved