login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A074638
Denominator of 1/3 + 1/7 + 1/11 + ... + 1/(4n-1).
4
3, 21, 231, 385, 7315, 168245, 4542615, 140821065, 28164213, 366134769, 15743795067, 739958368149, 12579292258533, 62896461292665, 3710891216267235, 3710891216267235, 248629711489904745, 17652709515783236895, 88263547578916184475, 6972820258734378573525
OFFSET
1,1
COMMENTS
This s(n) := Sum_{j=0..n-1} 1/(4*j + 3), for n >= 1, equals (Psi(n + 3/4) - Psi(3/4))/4, with the digamma function Psi(z). See Abramowitz-Stegun, p. 258, eqs. 6.3.7 and 6.3.5, with z -> 3/4. A200134 = -Psi(3/4). - Wolfdieter Lang, Apr 06 2022
LINKS
Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions. p.258, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. p. 258.
FORMULA
Denominator( (Psi(n + 3/4) - Psi(3/4))/4 ). See the comment above. - Wolfdieter Lang, Apr 05 2022
MATHEMATICA
Table[ Denominator[ Sum[1/i, {i, 3/4, n}]], {n, 1, 20}]
PROG
(Python)
from fractions import Fraction
def a(n): return sum(Fraction(1, 4*i-1) for i in range(1, n+1)).denominator
print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Mar 21 2021
(PARI) a(n) = denominator(sum(i=1, n, 1/(4*i-1))); \\ Michel Marcus, Mar 21 2021
CROSSREFS
The numerators times 4 are A074637.
Sequence in context: A369795 A113663 A082545 * A332708 A097329 A119097
KEYWORD
easy,frac,nonn
AUTHOR
Robert G. Wilson v, Aug 27 2002
STATUS
approved