login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082548
a(n) is the number of values of k such that k can be expressed as the sum of distinct primes with largest prime in the sum equal to prime(n).
5
1, 2, 4, 7, 12, 23, 36, 53, 72, 95, 124, 155, 192, 233, 276, 323, 376, 435, 496, 563, 634, 707, 786, 869, 958, 1055, 1156, 1259, 1366, 1475, 1588, 1715, 1846, 1983, 2122, 2271, 2422, 2579, 2742, 2909, 3082, 3261, 3442, 3633, 3826, 4023, 4222, 4433, 4656, 4883
OFFSET
1,2
COMMENTS
Surprisingly, except for the initial term, the first differences of this sequence is the sequence of primes with 7 omitted. [John W. Layman, Feb 25 2012]
Also number of k that can be expressed as a signed sum of the first n-1 primes. - Seiichi Manyama, Oct 01 2019
LINKS
FORMULA
a(n) = A007504(n-1) - 5 for n > 4. - Seiichi Manyama, Oct 02 2019
EXAMPLE
For n=4; 7 is the 4th prime. 7 = 7, 9 = 2+7, 10 = 3+7, 12 = 5+7 = 2+3+7, 14 = 2+5+7, 15 = 3+5+7, 17 = 2+3+5+7. Values of m are 7 and 9,10,12,14,15,17. so a(4)=7.
From Seiichi Manyama, Oct 01 2019: (Start)
7 = 7, so 7*2 = 14 = 24-10 = 24+(-2-3-5).
2+7 = 9, so (2+7)*2 = 18 = 24- 6 = 24+( 2-3-5).
3+7 = 10, so (3+7)*2 = 20 = 24- 4 = 24+(-2+3-5).
5+7 = 12, so (5+7)*2 = 24 = 24+ 0 = 24+(-2-3+5).
2+5+7 = 14, so (2+5+7)*2 = 28 = 24+ 4 = 24+( 2-3+5).
3+5+7 = 15, so (3+5+7)*2 = 30 = 24+ 6 = 24+(-2+3+5).
2+3+5+7 = 17. so (2+3+5+7)*2 = 34 = 24+10 = 24+( 2+3+5). (End)
From Seiichi Manyama, Oct 02 2019: (Start)
Let b(n) be the number of k (>=0) that can be expressed as the sum of distinct primes with largest prime in the sum not greater than prime(n).
n |b(n)| |
--+----+------------+--------------------------------------
4 | 12 | 0 | 11
| | 2 | 13 = 2+11
| | 3 | 14 = 3+11
| | 5 | 16 = 5+11
| | 7 | 18 = 7+11
| | 8 = 3+5 | 19 = 8+11 = (3+5)+11
| | 9 = 17-8 | 20 = 9+11 = (2+3+5+7)-(3+5)+11
| | 10 = 17-7 | 21 = 10+11 = (2+3+5+7)-7 +11
| | 12 = 17-5 | 23 = 12+11 = (2+3+5+7)-5 +11
| | 14 = 17-3 | 25 = 14+11 = (2+3+5+7)-3 +11
| | 15 = 17-2 | 26 = 15+11 = (2+3+5+7)-2 +11
| | 17 = 17-0 | 28 = 17+11 = (2+3+5+7) +11
--+----+------------+--------------------------------------
5 | 23 | 0 | 13
| | 2 | 15 = 2+13
| | 3 | 16 = 3+13
| | 5 | 18 = 5+13
| | 7 | 20 = 7+13
| | 8 = 3+5 | 21 = 8+13 = (3+5) +13
| | 9 = 2+7 | 22 = 9+13 = (2+7) +13
| | 10 = 2+3+5 | 23 = 10+13 = (2+3+5)+13
| | 11 | 24 = 11+13
| | ... | ...
| | 17 = 28-11 | 30 = 17+13 = (2+3+5+7+11)-11 +13
| | 18 = 28-10 | 31 = 18+13 = (2+3+5+7+11)-(2+3+5)+13
| | 19 = 28- 9 | 32 = 19+13 = (2+3+5+7+11)-(2+7) +13
| | 20 = 28- 8 | 33 = 20+13 = (2+3+5+7+11)-(3+5) +13
| | 21 = 28- 7 | 34 = 21+13 = (2+3+5+7+11)- 7 +13
| | 23 = 28- 5 | 36 = 23+13 = (2+3+5+7+11)- 5 +13
| | 25 = 28- 3 | 38 = 25+13 = (2+3+5+7+11)- 3 +13
| | 26 = 28- 2 | 39 = 26+13 = (2+3+5+7+11)- 2 +13
| | 28 = 28- 0 | 41 = 28+13 = (2+3+5+7+11) +13
--+----+------------+-------------------------------------
...
b(n) = Sum_{k=1..n} prime(k) + 1 - 3*2 = A007504(n) - 5 for n>3.
So a(n) = b(n-1) = A007504(n-1) - 5 for n>4.
PROG
(PARI) limit = 70; M = sum(i = 1, limit, prime(i)); v = vector(M); primeSum = 0; forprime (n = 1, prime(limit), count = 1; forstep (i = primeSum, 1, -1, if (v[i], count = count + 1; v[i + n] = 1)); v[n] = 1; print(count); primeSum = primeSum + n)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Naohiro Nomoto, May 02 2003
EXTENSIONS
More terms from David Wasserman, Sep 16 2004
STATUS
approved