Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #69 Dec 25 2023 22:51:41
%S 1,2,4,7,12,23,36,53,72,95,124,155,192,233,276,323,376,435,496,563,
%T 634,707,786,869,958,1055,1156,1259,1366,1475,1588,1715,1846,1983,
%U 2122,2271,2422,2579,2742,2909,3082,3261,3442,3633,3826,4023,4222,4433,4656,4883
%N a(n) is the number of values of k such that k can be expressed as the sum of distinct primes with largest prime in the sum equal to prime(n).
%C Surprisingly, except for the initial term, the first differences of this sequence is the sequence of primes with 7 omitted. [_John W. Layman_, Feb 25 2012]
%C Also number of k that can be expressed as a signed sum of the first n-1 primes. - _Seiichi Manyama_, Oct 01 2019
%H Seiichi Manyama, <a href="/A082548/b082548.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = A007504(n-1) - 5 for n > 4. - _Seiichi Manyama_, Oct 02 2019
%e For n=4; 7 is the 4th prime. 7 = 7, 9 = 2+7, 10 = 3+7, 12 = 5+7 = 2+3+7, 14 = 2+5+7, 15 = 3+5+7, 17 = 2+3+5+7. Values of m are 7 and 9,10,12,14,15,17. so a(4)=7.
%e From _Seiichi Manyama_, Oct 01 2019: (Start)
%e 7 = 7, so 7*2 = 14 = 24-10 = 24+(-2-3-5).
%e 2+7 = 9, so (2+7)*2 = 18 = 24- 6 = 24+( 2-3-5).
%e 3+7 = 10, so (3+7)*2 = 20 = 24- 4 = 24+(-2+3-5).
%e 5+7 = 12, so (5+7)*2 = 24 = 24+ 0 = 24+(-2-3+5).
%e 2+5+7 = 14, so (2+5+7)*2 = 28 = 24+ 4 = 24+( 2-3+5).
%e 3+5+7 = 15, so (3+5+7)*2 = 30 = 24+ 6 = 24+(-2+3+5).
%e 2+3+5+7 = 17. so (2+3+5+7)*2 = 34 = 24+10 = 24+( 2+3+5). (End)
%e From _Seiichi Manyama_, Oct 02 2019: (Start)
%e Let b(n) be the number of k (>=0) that can be expressed as the sum of distinct primes with largest prime in the sum not greater than prime(n).
%e n |b(n)| |
%e --+----+------------+--------------------------------------
%e 4 | 12 | 0 | 11
%e | | 2 | 13 = 2+11
%e | | 3 | 14 = 3+11
%e | | 5 | 16 = 5+11
%e | | 7 | 18 = 7+11
%e | | 8 = 3+5 | 19 = 8+11 = (3+5)+11
%e | | 9 = 17-8 | 20 = 9+11 = (2+3+5+7)-(3+5)+11
%e | | 10 = 17-7 | 21 = 10+11 = (2+3+5+7)-7 +11
%e | | 12 = 17-5 | 23 = 12+11 = (2+3+5+7)-5 +11
%e | | 14 = 17-3 | 25 = 14+11 = (2+3+5+7)-3 +11
%e | | 15 = 17-2 | 26 = 15+11 = (2+3+5+7)-2 +11
%e | | 17 = 17-0 | 28 = 17+11 = (2+3+5+7) +11
%e --+----+------------+--------------------------------------
%e 5 | 23 | 0 | 13
%e | | 2 | 15 = 2+13
%e | | 3 | 16 = 3+13
%e | | 5 | 18 = 5+13
%e | | 7 | 20 = 7+13
%e | | 8 = 3+5 | 21 = 8+13 = (3+5) +13
%e | | 9 = 2+7 | 22 = 9+13 = (2+7) +13
%e | | 10 = 2+3+5 | 23 = 10+13 = (2+3+5)+13
%e | | 11 | 24 = 11+13
%e | | ... | ...
%e | | 17 = 28-11 | 30 = 17+13 = (2+3+5+7+11)-11 +13
%e | | 18 = 28-10 | 31 = 18+13 = (2+3+5+7+11)-(2+3+5)+13
%e | | 19 = 28- 9 | 32 = 19+13 = (2+3+5+7+11)-(2+7) +13
%e | | 20 = 28- 8 | 33 = 20+13 = (2+3+5+7+11)-(3+5) +13
%e | | 21 = 28- 7 | 34 = 21+13 = (2+3+5+7+11)- 7 +13
%e | | 23 = 28- 5 | 36 = 23+13 = (2+3+5+7+11)- 5 +13
%e | | 25 = 28- 3 | 38 = 25+13 = (2+3+5+7+11)- 3 +13
%e | | 26 = 28- 2 | 39 = 26+13 = (2+3+5+7+11)- 2 +13
%e | | 28 = 28- 0 | 41 = 28+13 = (2+3+5+7+11) +13
%e --+----+------------+-------------------------------------
%e ...
%e b(n) = Sum_{k=1..n} prime(k) + 1 - 3*2 = A007504(n) - 5 for n>3.
%e So a(n) = b(n-1) = A007504(n-1) - 5 for n>4.
%o (PARI) limit = 70; M = sum(i = 1, limit, prime(i)); v = vector(M); primeSum = 0; forprime (n = 1, prime(limit), count = 1; forstep (i = primeSum, 1, -1, if (v[i], count = count + 1; v[i + n] = 1)); v[n] = 1; print(count); primeSum = primeSum + n)
%Y Cf. A007504, A082533, A082534, A327467.
%K easy,nonn
%O 1,2
%A _Naohiro Nomoto_, May 02 2003
%E More terms from _David Wasserman_, Sep 16 2004