Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Dec 29 2023 12:55:33
%S 1,0,1,2,1,1,0,3,2,1,6,4,5,3,1,0,10,10,8,4,1,20,15,21,19,12,5,1,0,35,
%T 42,42,32,17,6,1,70,56,84,92,77,50,23,7,1,0,126,168,192,180,131,74,30,
%U 8,1,252,210,330,405,400,326,210,105,38,9,1
%N Riordan array (1/sqrt(1-4*x^2), (1-2*x^2*c(x^2))*(x^2*c(x^2))/(x*(1-x-x^2*c(x^2)))) where c(x) is the g.f. of A000108.
%C Row sums are A116383. Diagonal sums are A116384.
%C First column has e.g.f. Bessel_I(0,2*x) (A000984 with interpolated zeros).
%C Second column has e.g.f. Bessel_I(1,2*x) + Bessel_I(2,2*x) (A037952).
%C Third column has e.g.f. Bessel_I(2,2*x) + 2*Bessel_I(3,2*x) + Bessel_I(4,2*x) (A116385).
%C A binomial-Bessel triangle: column k has e.g.f. Sum_{j=0..k} C(k,j) * Bessel_I(k+j,2*x).
%H G. C. Greubel, <a href="/A116382/b116382.txt">Rows n = 0..100 of triangle, flattened</a>
%F Riordan array (1/sqrt(1-4*x^2), sqrt(1-4*x^2)*(1-sqrt(1-4*x^2))/(x-2*x^2 + x*sqrt(1-4*x^2))).
%F Number triangle T(n,k) = Sum{j=0..n} (-1)^(n-j)* C(n,j)*Sum_{i=0..j} C(j,i-k)*C(i,j-i).
%e Triangle begins
%e 1;
%e 0, 1;
%e 2, 1, 1;
%e 0, 3, 2, 1;
%e 6, 4, 5, 3, 1;
%e 0, 10, 10, 8, 4, 1;
%e 20, 15, 21, 19, 12, 5, 1;
%e 0, 35, 42, 42, 32, 17, 6, 1;
%e 70, 56, 84, 92, 77, 50, 23, 7, 1;
%e 0, 126, 168, 192, 180, 131, 74, 30, 8, 1;
%e 252, 210, 330, 405, 400, 326, 210, 105, 38, 9, 1;
%t T[n_, k_] := Sum[(-1)^(n-j)*Binomial[n, j]*Sum[Binomial[j, i-k]* Binomial[i, j-i], {i, 0, j}], {j, 0, n}];
%t Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jan 24 2018 *)
%o (PARI) {T(n,k) = sum(j=0,n, (-1)^(n-j)*binomial(n,j)*sum(m=0,j, binomial(j,m-k)*binomial(m,j-m) ))}; \\ _G. C. Greubel_, May 22 2019
%o (Magma)
%o T:= func< n,k | (&+[(-1)^(n-j)*Binomial(n,j)*(&+[Binomial(j,m-k)* Binomial(m,j-m): m in [0..j]]): j in [0..n]]) >;
%o [[T(n,k): k in [0..n]]: n in [0..10]] // _G. C. Greubel_, May 22 2019
%o (Sage)
%o def T(n, k): return sum((-1)^(n-j)*binomial(n,j)*sum(binomial(j,m-k)*binomial(m,j-m) for m in (0..j)) for j in (0..n))
%o [[T(n, k) for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, May 22 2019
%o (GAP) Flat(List([0..10], n-> List([0..n], k-> Sum([0..n], j-> (-1)^(n-j)*Binomial(n,j)*Sum([0..j], m-> Binomial(j,m-k)*Binomial(m,j-m) ))))) # _G. C. Greubel_, May 22 2019
%K easy,nonn,tabl
%O 0,4
%A _Paul Barry_, Feb 12 2006