login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122942
Partial product of n-th n-almost prime (A101695) divided by product of the first n primes, rounded down.
1
1, 2, 7, 41, 403, 6960, 196527, 13405218, 1566662070, 304256578608, 113065670502087, 78229220671714544, 101598769325059903837, 293965406612712860369329, 1613982664799943153033715558
OFFSET
1,2
FORMULA
a(n) = floor( Product_{i=1..n} A101695(i) / A000040(i) ).
EXAMPLE
a(1) = floor(2/2) = floor(1) = 1.
a(2) = floor(12/6) = floor(2) = 2.
a(3) = floor(216/30) = floor(7.2) = 7.
a(4) = floor(8640/210) = floor(41.1428571) = 41.
a(5) = floor(933120/2310) = floor(403.948052) = 403.
a(6) = floor(209018880/30030) = floor(6960.33566) = 6960.
MATHEMATICA
AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
AlmostPrime[k_, n_] := Block[{e = Floor[Log[2, n]+k], a, b}, a = 2^e; Do[b = 2^p; While[ AlmostPrimePi[k, a] < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; AlmostPrime[1, 1] = 2;
t = Table[ AlmostPrime[n, n], {n, 20}]; Floor[Rest@ FoldList[Times, 1, t]/Rest@ FoldList[Times, 1, Prime@ Range@ 20]] (* Robert G. Wilson v, Aug 31 2007 *)
CROSSREFS
Sequence in context: A008934 A084871 A340645 * A159315 A191601 A265772
KEYWORD
easy,nonn,less
AUTHOR
Jonathan Vos Post, Oct 24 2006
EXTENSIONS
More terms from Robert G. Wilson v, Aug 31 2007
STATUS
approved