login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317800
G.f. A(x) satisfies: Sum_{n>=1} ( A(x) - (-1)^n * A(-x) )^n * (-1)^n / n = 0.
2
1, 1, 1, 4, 10, 33, 105, 354, 1214, 4206, 14846, 52750, 189516, 686745, 2506913, 9211226, 34036230, 126426446, 471769950, 1767460752, 6645539212, 25076120890, 94937019050, 360268374124, 1369645176012, 5226326126048, 20039843858208, 76654036799842, 290534140464144, 1123489897863753, 4582416833711249, 17212665701732282, 45565498032190230
OFFSET
1,4
COMMENTS
Odd terms occur at a(2^k - 1) and a(2^k - 2) for k > 1 and at a(1), while a(n) is even elsewhere (conjecture).
First negative term is a(37).
LINKS
FORMULA
G.f. A(x) satisfies:
(1) A(-A(-x)) = x.
(2a) Sum_{n>=1} ( A(x) - (-1)^n * A(-x) )^n * (-1)^n / n = 0.
(2b) A(A(x)) = B(x) such that Sum_{n>=1} ( x + (-1)^n * B(x) )^n / n = 0, where B(x) is the o.g.f. of A316363.
(3a) A(A(x)) = -x + 2 * Series_Reversion( x - x^2/(1 - 2*x^2) ).
(3b) A(A(x)) = x + 2 * Series_Reversion( x/sqrt(1 + 2*x^2) - x^2 )^2.
Let C = (A(x) + A(-x))/2 and S = (A(x) - A(-x))/2, then
(4a) arctanh(2*C) + log(1 - 4*S^2)/2 = 0,
(4b) 1 - 4*S^2 = (1 - 2*C)/(1 + 2*C),
(5a) S^2 = C/(1 + 2*C),
(5b) C = S^2/(1 - 2*S^2),
(6a) A(x) = S + S^2/(1 - 2*S^2),
(6b) A(x) = C + sqrt(C/(1 + 2*C)).
(7) 0 = (2*y + y^2 - y^3) - (2 - 2*y + y^2)*A(x) + (1 + y)*A(x)^2 + A(x)^3, where y = -A(-x) = Series_Reversion(A(x)).
EXAMPLE
G.f. A(x) = x + x^2 + x^3 + 4*x^4 + 10*x^5 + 33*x^6 + 105*x^7 + 354*x^8 + 1214*x^9 + 4206*x^10 + ...
Let the series bisections of g.f. A(x) be denoted by
C = (A(x) + A(-x))/2 = x^2 + 4*x^4 + 33*x^6 + 354*x^8 + 4206*x^10 + ...
S = (A(x) - A(-x))/2 = x + x^3 + 10*x^5 + 105*x^7 + 1214*x^9 + 14846*x^11 + ...
then from the definition we have
0 = (2*C) - (2*S)^2/2 + (2*C)^3/3 - (2*S)^4/4 + (2*C)^5/5 - (2*S)^6/6 + (2*C)^7/7 - (2*S)^8/8 + ...
thus arctanh(2*C) + log(1 - 4*S^2)/2 = 0,
so that (1 - 2*C)/(1 + 2*C) = 1 - 4*S^2.
RELATED SERIES.
A(A(x)) = x + 2*x^2 + 4*x^3 + 14*x^4 + 52*x^5 + 204*x^6 + 840*x^7 + 3574*x^8 + 15588*x^9 + 69332*x^10 + ... + A316363(n)*x^n + ...
where A(A(x)) = -x + 2 * Series_Reversion( x - x^2/(1 - 2*x^2) ).
PROG
(PARI) /* From: A(x) = S + S^2/(1 - 2*S^2) and A(x) = Series_Reversion(-A(-x)) */
{a(n) = my(A=[1, 1], S); for(i=1, n, S=(x*Ser(A) - subst(x*Ser(A), x, -x))/2; A=concat(Vec( S + S^2/(1 - 2*S^2) ), 0); if(#A%2==1, A = (A + Vec( serreverse(subst(-x*Ser(A), x, -x)) ) )/2 ); ); A[n]}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Cf. A316363.
Sequence in context: A052373 A007716 A122948 * A357799 A149171 A149172
KEYWORD
sign
AUTHOR
Paul D. Hanna, Aug 09 2018
STATUS
approved