Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #39 Aug 16 2018 12:27:48
%S 1,1,1,4,10,33,105,354,1214,4206,14846,52750,189516,686745,2506913,
%T 9211226,34036230,126426446,471769950,1767460752,6645539212,
%U 25076120890,94937019050,360268374124,1369645176012,5226326126048,20039843858208,76654036799842,290534140464144,1123489897863753,4582416833711249,17212665701732282,45565498032190230
%N G.f. A(x) satisfies: Sum_{n>=1} ( A(x) - (-1)^n * A(-x) )^n * (-1)^n / n = 0.
%C Odd terms occur at a(2^k - 1) and a(2^k - 2) for k > 1 and at a(1), while a(n) is even elsewhere (conjecture).
%C First negative term is a(37).
%H Paul D. Hanna, <a href="/A317800/b317800.txt">Table of n, a(n) for n = 1..520</a>
%F G.f. A(x) satisfies:
%F (1) A(-A(-x)) = x.
%F (2a) Sum_{n>=1} ( A(x) - (-1)^n * A(-x) )^n * (-1)^n / n = 0.
%F (2b) A(A(x)) = B(x) such that Sum_{n>=1} ( x + (-1)^n * B(x) )^n / n = 0, where B(x) is the o.g.f. of A316363.
%F (3a) A(A(x)) = -x + 2 * Series_Reversion( x - x^2/(1 - 2*x^2) ).
%F (3b) A(A(x)) = x + 2 * Series_Reversion( x/sqrt(1 + 2*x^2) - x^2 )^2.
%F Let C = (A(x) + A(-x))/2 and S = (A(x) - A(-x))/2, then
%F (4a) arctanh(2*C) + log(1 - 4*S^2)/2 = 0,
%F (4b) 1 - 4*S^2 = (1 - 2*C)/(1 + 2*C),
%F (5a) S^2 = C/(1 + 2*C),
%F (5b) C = S^2/(1 - 2*S^2),
%F (6a) A(x) = S + S^2/(1 - 2*S^2),
%F (6b) A(x) = C + sqrt(C/(1 + 2*C)).
%F (7) 0 = (2*y + y^2 - y^3) - (2 - 2*y + y^2)*A(x) + (1 + y)*A(x)^2 + A(x)^3, where y = -A(-x) = Series_Reversion(A(x)).
%e G.f. A(x) = x + x^2 + x^3 + 4*x^4 + 10*x^5 + 33*x^6 + 105*x^7 + 354*x^8 + 1214*x^9 + 4206*x^10 + ...
%e Let the series bisections of g.f. A(x) be denoted by
%e C = (A(x) + A(-x))/2 = x^2 + 4*x^4 + 33*x^6 + 354*x^8 + 4206*x^10 + ...
%e S = (A(x) - A(-x))/2 = x + x^3 + 10*x^5 + 105*x^7 + 1214*x^9 + 14846*x^11 + ...
%e then from the definition we have
%e 0 = (2*C) - (2*S)^2/2 + (2*C)^3/3 - (2*S)^4/4 + (2*C)^5/5 - (2*S)^6/6 + (2*C)^7/7 - (2*S)^8/8 + ...
%e thus arctanh(2*C) + log(1 - 4*S^2)/2 = 0,
%e so that (1 - 2*C)/(1 + 2*C) = 1 - 4*S^2.
%e RELATED SERIES.
%e A(A(x)) = x + 2*x^2 + 4*x^3 + 14*x^4 + 52*x^5 + 204*x^6 + 840*x^7 + 3574*x^8 + 15588*x^9 + 69332*x^10 + ... + A316363(n)*x^n + ...
%e where A(A(x)) = -x + 2 * Series_Reversion( x - x^2/(1 - 2*x^2) ).
%o (PARI) /* From: A(x) = S + S^2/(1 - 2*S^2) and A(x) = Series_Reversion(-A(-x)) */
%o {a(n) = my(A=[1,1],S); for(i=1,n, S=(x*Ser(A) - subst(x*Ser(A),x,-x))/2; A=concat(Vec( S + S^2/(1 - 2*S^2) ),0); if(#A%2==1,A = (A + Vec( serreverse(subst(-x*Ser(A),x,-x)) ) )/2 ); );A[n]}
%o for(n=1,30, print1(a(n),", "))
%Y Cf. A316363.
%K sign
%O 1,4
%A _Paul D. Hanna_, Aug 09 2018