The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A317798 G.f.: Sum_{n>=0} (3*(1+x)^n - 1)^n / 3^(n+1). 1
 1, 15, 786, 69261, 8554530, 1359020643, 263929299177, 60582032629791, 16046282916588207, 4817035600778756553, 1616224504900354928832, 599373591433178971787007, 243449152911402772344286998, 107482020677618238226506065235, 51249638236281451846248205583562, 26247197050200652206165329786055981, 14369481728948627418149559363836673273 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS FORMULA G.f. satisfies: (1) Sum_{n>=0} 3^n * (1+x)^(n^2) / (3 + (1+x)^n)^(n+1). (2) Sum_{n>=0} ((1+x)^n - 1/3)^n / 3. EXAMPLE G.f.: A(x) = 1 + 15*x + 786*x^2 + 69261*x^3 + 8554530*x^4 + 1359020643*x^5 + 263929299177*x^6 + 60582032629791*x^7 + 16046282916588207*x^8 + ... such that A(x) = 1/3 + (3*(1+x) - 1)/3^2 + (3*(1+x)^2 - 1)^3/3^3 + (3*(1+x)^3 - 1)^3/3^4 + (3*(1+x)^4 - 1)^4/3^5 + (3*(1+x)^5 - 1)^5/3^6 + ... Also, A(x) = 1/4 + 3*(1+x)/(3 + (1+x))^2 + 3^2*(1+x)^4/(3 + (1+x)^2)^3 + 3^3*(1+x)^9/(3 + (1+x)^3)^4 + 3^4*(1+x)^16/(3 + (1+x)^4)^5 + 3^5*(1+x)^25/(3 + (1+x)^5)^6 + 3^6*(1+x)^36/(3 + (1+x)^6)^7 + ... CROSSREFS Cf. A122400, A301463, A317799, A301582. Sequence in context: A333562 A116094 A267754 * A280310 A211104 A279493 Adjacent sequences: A317795 A317796 A317797 * A317799 A317800 A317801 KEYWORD nonn AUTHOR Paul D. Hanna, Aug 14 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 21 16:33 EDT 2023. Contains 361408 sequences. (Running on oeis4.)