login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A182114 Number of partitions of n with largest inscribed rectangle having area <= k; triangle T(n,k), 0<=n, 0<=k<=n, read by rows. 13
1, 0, 1, 0, 0, 2, 0, 0, 1, 3, 0, 0, 0, 2, 5, 0, 0, 0, 1, 5, 7, 0, 0, 0, 0, 5, 7, 11, 0, 0, 0, 0, 3, 7, 13, 15, 0, 0, 0, 0, 1, 5, 16, 18, 22, 0, 0, 0, 0, 0, 3, 17, 21, 27, 30, 0, 0, 0, 0, 0, 1, 16, 22, 34, 38, 42, 0, 0, 0, 0, 0, 0, 13, 21, 39, 48, 54, 56 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

T(n,k) = A000041(k) for n<k is omitted from the triangle.

Sum_{n>=0} T(n,k) = A115725(k).

LINKS

Alois P. Heinz, Rows n = 0..140, flattened

FORMULA

T(n,k) = Sum_{i=1..k} A115723(n,i) for n>0, T(0,0) = 1.

EXAMPLE

T(5,4) = 5 because there are 5 partitions of 5 with largest inscribed rectangle having area <= 4: [1,1,1,2], [1,2,2], [1,1,3], [2,3], [1,4].

T(9,5) = 3: [1,1,1,2,4], [1,1,1,1,5], [1,1,2,5].

Triangle T(n,k) begins:

  1;

  0, 1;

  0, 0, 2;

  0, 0, 1, 3;

  0, 0, 0, 2, 5;

  0, 0, 0, 1, 5, 7;

  0, 0, 0, 0, 5, 7, 11;

  0, 0, 0, 0, 3, 7, 13, 15;

  0, 0, 0, 0, 1, 5, 16, 18, 22;

  0, 0, 0, 0, 0, 3, 17, 21, 27, 30;

  0, 0, 0, 0, 0, 1, 16, 22, 34, 38, 42;

  ...

MAPLE

b:= proc(n, i, t, k) option remember; `if`(n=0, 1,

      `if`(i=1, `if`(t+n<=k, 1, 0), `if`(i<1, 0, b(n, i-1, t, k)+

       add(`if`(t+j<=k/i, b(n-i*j, i-1, t+j, k), 0), j=1..n/i))))

    end:

T:= (n, k)-> b(n, n, 0, k):

seq(seq(T(n, k), k=0..n), n=0..15);

MATHEMATICA

b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i == 1, If[t + n <= k, 1, 0], If[i < 1, 0, b[n, i - 1, t, k] + Sum[If[t + j <= k/i, b[n - i*j, i - 1, t + j, k], 0], {j, 1, n/i}]]]] ; T[n_, k_] := b[n, n, 0, k]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 15}] // Flatten (* Jean-Fran├žois Alcover, Dec 27 2013, translated from Maple *)

CROSSREFS

Diagonal gives: A000041.

T(n,n-1) = A144300(n) = A000041(n) - A000005(n).

T(n+d,n) for d=2-10 give: A218623, A218624, A218625, A218626, A218627, A218628, A218629, A218630, A218631.

Cf. A115723, A115725.

Sequence in context: A258651 A350530 A258850 * A122950 A116489 A166373

Adjacent sequences:  A182111 A182112 A182113 * A182115 A182116 A182117

KEYWORD

nonn,look,tabl

AUTHOR

Alois P. Heinz, Apr 12 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 22 17:42 EDT 2022. Contains 353957 sequences. (Running on oeis4.)