OFFSET
0,4
LINKS
B. Kim, E. Kim, and J. Lovejoy, Parity bias in partitions, European J. Combin., 89 (2020), 103159, 19 pp.
FORMULA
G.f.: (Product_{k>=1} (1+q^k)/(1-q^k)) - Sum_{n>=0} q^(n*(n+1)/2)/ ((Product_{k=1..n} (1-q^k)^2) * (1-q^(n+1))).
EXAMPLE
a(4) = 5 counts the overpartitions [3,1], [2,2], [2,1,1], [1,1,1,1], and [1',1,1,1].
MAPLE
b:= proc(n, i, c) option remember; `if`(n=0,
`if`(c>1, 1, 0), `if`(i<1, 0, b(n, i-1, c)+add(
add(b(n-i*j, i-1, c+j-t), t=[0, 2]), j=1..n/i)))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..60); # Alois P. Heinz, Jan 15 2021
MATHEMATICA
b[n_, i_, c_] := b[n, i, c] = If[n == 0,
If[c > 1, 1, 0], If[i < 1, 0, b[n, i-1, c] + Sum[
Sum[b[n-i*j, i-1, c+j-t], {t, {0, 2}}], {j, 1, n/i}]]];
a[n_] := b[n, n, 0];
Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 14 2022, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Jeremy Lovejoy, Jan 15 2021
STATUS
approved