login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340668
The number of overpartitions of n where the number of non-overlined parts is at least two more than the number of overlined parts.
0
0, 0, 1, 2, 5, 9, 17, 29, 49, 79, 125, 193, 293, 437, 642, 932, 1336, 1896, 2663, 3709, 5121, 7020, 9551, 12913, 17347, 23172, 30779, 40679, 53495, 70030, 91269, 118459, 153133, 197214, 253057, 323595, 412418, 523953, 663612, 838035, 1055304, 1325287, 1659969
OFFSET
0,4
COMMENTS
Also equal to A340658(n) - A001524(n).
LINKS
B. Kim, E. Kim, and J. Lovejoy, Parity bias in partitions, European J. Combin., 89 (2020), 103159, 19 pp.
FORMULA
G.f.: (Product_{k>=1} (1+q^k)/(1-q^k)) - Sum_{n>=0} q^(n*(n+1)/2)/ ((Product_{k=1..n} (1-q^k)^2) * (1-q^(n+1))).
EXAMPLE
a(4) = 5 counts the overpartitions [3,1], [2,2], [2,1,1], [1,1,1,1], and [1',1,1,1].
MAPLE
b:= proc(n, i, c) option remember; `if`(n=0,
`if`(c>1, 1, 0), `if`(i<1, 0, b(n, i-1, c)+add(
add(b(n-i*j, i-1, c+j-t), t=[0, 2]), j=1..n/i)))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..60); # Alois P. Heinz, Jan 15 2021
MATHEMATICA
b[n_, i_, c_] := b[n, i, c] = If[n == 0,
If[c > 1, 1, 0], If[i < 1, 0, b[n, i-1, c] + Sum[
Sum[b[n-i*j, i-1, c+j-t], {t, {0, 2}}], {j, 1, n/i}]]];
a[n_] := b[n, n, 0];
Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 14 2022, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Jeremy Lovejoy, Jan 15 2021
STATUS
approved