login
A230135
Triangle read by rows: T(n, k) = 1 if ((k mod 4 = 2) and (n mod 2 = 1)) or ((k mod 4 = 0) and (n mod 2 = 0)) else T(n, k) = 0.
2
1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0
OFFSET
0
COMMENTS
The T(n, k) triangle is related to the Kn1p sums of the ‘Races with Ties’ triangle A035317. See A230447 for the Kn1p sums and see A180662 for the definitions of these triangle sums.
The row sums lead to three sequences and they can, quite surprisingly, be linked with Alcuin’s sequence A005044, see the formulas.
LINKS
E. Mendelson, Races with Ties, Math. Mag. 55 (1982), 170-175.
FORMULA
T(n, k) = 1 if ((k mod 4 = 2) and (n mod 2 = 1)) or ((k mod 4 = 0) and (n mod 2 = 0)) else T(n, k) = 0.
sum(T(n, k), k=0..n) = A008624(n) = A026922(n+2) = A059169(n+3) = A005044(n+3) - A005044(n-3).
EXAMPLE
The first few rows of triangle T(n, k), n >= 0 and 0 <= k <= n.
n/k 0 1 2 3 4 5 6 7
------------------------------------------------
0| 1
1| 0, 0
2| 1, 0, 0
3| 0, 0, 1, 0
4| 1, 0, 0, 0, 1
5| 0, 0, 1, 0, 0, 0
6| 1, 0, 0, 0, 1, 0, 0
7| 0, 0, 1, 0, 0, 0, 1, 0
MAPLE
T := proc(n, k): if ((k mod 4 = 2) and (n mod 2 = 1)) or ((k mod 4 = 0) and (n mod 2 = 0)) then return(1) else return(0) fi: end: seq(seq(T(n, k), k=0..n), n=0..13);
MATHEMATICA
Flatten[Table[Which[Mod[k, 4]==2&&Mod[n, 2]==1, 1, Mod[k, 4]==Mod[ n, 2]== 0, 1, True, 0], {n, 0, 20}, {k, 0, n}]] (* Harvey P. Dale, May 15 2021 *)
CROSSREFS
Sequence in context: A368997 A373830 A330682 * A359836 A359835 A353331
KEYWORD
nonn,easy,tabl
AUTHOR
Johannes W. Meijer, Oct 12 2013
STATUS
approved