OFFSET
1,1
COMMENTS
Clearly, all terms are congruent to 5 modulo 6, and not congruent to 3 modulo 5. Primes in this sequence are sparser than twin primes and Sophie Germain primes.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
EXAMPLE
a(1) = 5 since neither 2 + 2 nor 2*3 - 5 is prime, but 5 + 2 = 7 and 2*5 - 5 = 5 are both prime.
MATHEMATICA
PQ[p_]:=PQ[p]=PrimeQ[p+2]&&PrimeQ[2p-5]
m=0
Do[If[PQ[Prime[n]], m=m+1; Print[m, " ", Prime[n]]], {n, 1, 584}]
PROG
(PARI) is_A230138(p)=isprime(p)&&isprime(p+2)&&isprime(p*2-5) \\ For large p it might be much faster to check first whether p%6==5. - M. F. Hasler, Oct 10 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Oct 10 2013
STATUS
approved