login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268518
Primes p == -1 mod 6 such that there are consecutive primes q and r with p^2 = q + r + 1.
2
5, 11, 17, 29, 53, 101, 113, 137, 179, 251, 281, 419, 431, 449, 521, 569, 599, 677, 797, 857, 941, 1049, 1091, 1163, 1181, 1259, 1289, 1451, 1721, 1901, 1907, 2087, 2213, 2339, 2351, 2447, 2531, 2549, 2729, 2801, 2957, 2963, 3137, 3251, 3323, 3593, 3659, 3761, 3821, 3863, 4049, 4133, 4217
OFFSET
1,1
LINKS
Marius Coman, Sequences of Integers, Conjectures and New Arithmetical Tools, Education Publishing, Columbus, Ohio, 2015. See page 7.
David Consiglio, Jr., Python Program
EXAMPLE
5^2 = 11 + 13 + 1;
11^2 = 59 + 61 + 1;
17^2 = 139 + 149 + 1;
29^2 = 419 + 421 + 1;
53^2 = 1399 + 1409 + 1;
101^2 = 5099 + 5101 + 1;
113^2 = 6379 + 6389 + 1;
137^2 = 9377 + 9391 + 1;
179^2 = 16007 + 16033 + 1;
251^2 = 31489 + 31511 + 1;
281^2 = 39461 + 39499 + 1;
...
MAPLE
filter:= proc(n) local q, m;
if not isprime(n) then return false fi;
m:= (n^2-1)/2;
q:= prevprime(m);
nextprime(m-1)=2*m-q;
end proc:
select(filter, [seq(i, i=5..10000, 6)]); # Robert Israel, Aug 19 2020
MATHEMATICA
p[n_]:=Sqrt[n+NextPrime[n]+1]; p[Select[Prime[Range[10^6]], PrimeQ[p[#]]&&Mod[p[#]+1, 6]==0&]] (* Ivan N. Ianakiev, Feb 10 2016 *)
PROG
(PARI) lista(nn) = {my(q = prime(1), r = prime(2)); for (n=1, nn, s = q + r + 1; if (issquare(s, &p) && isprime(p) && ((p % 6)==5), print1(p, ", ")); q = r; r = nextprime(r+1); ); } \\ Michel Marcus, Feb 11 2016
CROSSREFS
Subsequence of A092740.
Sequence in context: A162336 A234346 A074267 * A268521 A230138 A231652
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 10 2016
EXTENSIONS
Corrected and extended by David Consiglio, Jr., Feb 10 2016
a(28)-a(53) from Ivan N. Ianakiev, Feb 10 2016
STATUS
approved