login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162336
Primes p of the form p = r+(r+1)/2 (where r is a prime number).
5
5, 11, 17, 29, 47, 71, 89, 101, 107, 191, 197, 227, 251, 269, 317, 359, 461, 467, 521, 569, 647, 659, 701, 719, 821, 857, 881, 911, 929, 947, 971, 1091, 1109, 1181, 1217, 1259, 1289, 1361, 1367, 1451, 1487, 1559, 1637, 1847, 1889, 1979, 2099, 2141, 2207
OFFSET
1,1
COMMENTS
Or primes of the form Sum_{x=1..n-th prime} (1-(-1)^x*x). - Juri-Stepan Gerasimov, Jul 14 2009
Primes p such that (2*p-1)/3 is prime. - J. M. Bergot, Aug 19 2020
LINKS
EXAMPLE
3+2=5, 7+4=11, 11+6=17, 19+10=29, 31+16=47, 47+24=71,.. r:3,7,11,19,31,47,59,67,71,127,131,151,167,179,211,239,307,311, ..A158709.
MAPLE
filter:= p -> isprime(p) and isprime((2*p-1)/3):
select(filter, [seq(i, i=5..10000, 6)]); # Robert Israel, Aug 19 2020
MATHEMATICA
lst={}; Do[r=Prime[n]; p=r+(r+1)/2; If[PrimeQ[p], AppendTo[lst, p]], {n, 6!}]; lst
Select[#+(#+1)/2&/@Prime[Range[300]], PrimeQ] (* Harvey P. Dale, Apr 30 2015 *)
CROSSREFS
Cf. A158709.
Sequence in context: A184247 A046135 A331946 * A234346 A074267 A268518
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Jul 18 2009
STATUS
approved