login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A046135
Primes p such that p+2 and p+12 are primes.
2
5, 11, 17, 29, 41, 59, 71, 101, 137, 179, 227, 239, 269, 281, 347, 419, 431, 641, 809, 827, 1019, 1049, 1091, 1151, 1277, 1289, 1427, 1481, 1487, 1607, 1697, 1721, 1877, 2027, 2087, 2129, 2141, 2339, 2381, 2687, 2729, 2789, 2999, 3359, 3527, 3581
OFFSET
1,1
COMMENTS
From Jonathan Vos Post, May 17 2006: (Start)
Could be defined as "Numbers n such that k^3+k^2+n is prime for k = 0, 1, 2."
The following subset is also prime for k = 3: 5, 11, 17, 71, 101, 137, 227, 281, 347, 431, 641, 827, 1151, 1277, 1487. The following subset of those is also prime for k = 4: 17, 71, 101, 227, 827, 1151, 1487. The following subset of those is also prime for k = 5: 827, 1151, 1487. The "17" in A050266's n^3+n^2+17 is because k^3+k^2+17 is prime for k = 1,2,3,4,5,6,7,8,9,10. Between 10000 and 20000 there are 30 members of the k = 0,1,2 sequence, of which these 10 are also prime for k = 3: 10301, 10937, 11057, 11777, 12107, 13997, 15137, 15737, 16061, 19541. The following subset of those is also prime for k = 5: 15137, 15737, 16061. Somewhere in these sequences is a value that breaks the 11-term record of A050266 and indeed any known prime generating polynomial record. (End)
LINKS
Eric Weisstein's World of Mathematics, Prime Triplet
FORMULA
{n such that n prime, n+2 prime, n+12 prime} = A001359 INTERSECT A046133. - Jonathan Vos Post, May 17 2006
MATHEMATICA
Select[Prime[Range[600]], PrimeQ[# + 2] && PrimeQ[# + 12]&] (* Vincenzo Librandi, Apr 09 2013 *)
PROG
(Magma) [p: p in PrimesUpTo(3600) | IsPrime(p+2) and IsPrime(p+12)]; // Vincenzo Librandi, Apr 09 2013
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
Edited by R. J. Mathar and N. J. A. Sloane, Aug 13 2008
STATUS
approved