OFFSET
1,1
COMMENTS
The index A277719(n) is h(n), the prime a(n) is p_h(n). If 1 <= n <= 43 and k in [p_{h(n+1)}/p_{h(n+1)-1}, p_{h(n)}/p_{h(n)-1}), then the first k-Ramanujan prime R^{(k)}_1 = p_{h(n)}. Extra terms require improvements of prime numbers in short intervals.
LINKS
Christian Axler and Thomas Leßmann, An explicit upper bound for the first k-Ramanujan prime, arXiv:1504.05485 [math.NT], 2015.
Christian Axler and Thomas Leßmann, On the first k-Ramanujan prime, Amer. Math. Monthly, 124 (2017), 642-646.
EXAMPLE
With n = 3, we see p_h(3) = 17, p_h(4) = 29, so that 29/23 <= k < 17/13. If k = 1.3 then R^(1.3)_1 = 17 = p_h(3).
CROSSREFS
KEYWORD
nonn
AUTHOR
John W. Nicholson, Oct 27 2016
STATUS
approved