login
A046869
Good primes (version 1): prime(n)^2 > prime(n-1)*prime(n+1).
11
5, 11, 17, 29, 37, 41, 53, 59, 67, 71, 79, 97, 101, 107, 127, 137, 149, 157, 163, 173, 179, 191, 197, 211, 223, 227, 239, 251, 257, 263, 269, 277, 281, 307, 311, 331, 347, 367, 373, 379, 397, 419, 431, 439, 457, 461, 479, 487, 499, 521, 541
OFFSET
1,1
COMMENTS
Also called geometrically strong primes. - Amarnath Murthy, Mar 08 2002
The idea can be extended by defining a geometrically strong prime of order k to be a prime that is greater than the geometric mean of r neighbors on both sides for all r = 1 to k but not for r = k+1. Similar generalizations can be applied to the sequence A051634. - Amarnath Murthy, Mar 08 2002
It appears that a(n) ~ 2*prime(n). - Thomas Ordowski, Jul 25 2012
Conjecture: primes p(n) such that 2*p(n) >= p(n-1) + p(n+1). - Thomas Ordowski, Jul 25 2012
Probably {3,7,23} U {good primes} = {primes p(n) > 2/(1/p(n-1) + 1/p(n+1))}. - Thomas Ordowski, Jul 27 2012
Except for A001359(1), A001359 is a subsequence. - Chai Wah Wu, Sep 10 2019
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, Section A14.
EXAMPLE
37 is a member as 37^2 = 1369 > 31*41 = 1271.
MAPLE
with(numtheory): a := [ ]: P := [ ]: M := 300: for i from 2 to M do if p(i)^2>p(i-1)*p(i+1) then a := [ op(a), i ]; P := [ op(P), p(i) ]; fi; od: a; P;
MATHEMATICA
Do[ If[ Prime[n]^2 > Prime[n - 1]*Prime[n + 1], Print[ Prime[n] ] ], {n, 2, 100} ]
Transpose[Select[Partition[Prime[Range[300]], 3, 1], #[[2]]^2>#[[1]]#[[3]]&]][[2]] (* Harvey P. Dale, May 13 2012 *)
Select[Prime[Range[2, 100]], #^2 > NextPrime[#]*NextPrime[#, -1] &] (* Jayanta Basu, Jun 29 2013 *)
PROG
(PARI) forprime(n=o=p=3, 999, o+0<(o=p)^2/(p=n) & print1(o", "))
isA046869(p)={ isprime(p) & p^2>precprime(p-1)*nextprime(p+1) } \\ M. F. Hasler, Jun 15 2011
(Magma) [NthPrime(n): n in [2..100] | NthPrime(n)^2 gt NthPrime(n-1)*NthPrime(n+1)]; // Bruno Berselli, Oct 23 2012
KEYWORD
nonn
EXTENSIONS
Corrected and extended by Robert G. Wilson v, Dec 06 2000
Edited by N. J. A. Sloane at the suggestion of Giovanni Resta, Aug 20 2007
STATUS
approved