

A184247


Primes, q, such that for three consecutive primes, p, q & r, with p<q<r, (q  p)/(r  q) is an integer.


4



5, 11, 17, 29, 41, 53, 59, 71, 97, 101, 107, 137, 149, 157, 173, 179, 191, 197, 211, 223, 227, 239, 257, 263, 269, 281, 311, 347, 373, 397, 419, 431, 457, 461, 487, 499, 521, 541, 563, 569, 593, 599, 607, 617, 641, 653, 659, 673, 733, 769, 809, 821, 827, 857
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The distance between the cited prime above to its immediate predecessor is divisible by the distance from that prime to its immediate successor.


LINKS



MATHEMATICA

fQ[n_] := Block[{p = NextPrime[n, 1], q = n, r = NextPrime[n]}, IntegerQ[(q  p)/(r  q)]]; Select[ Prime@ Range[2, 50], fQ]
Select[Partition[Prime[Range[150]], 3, 1], IntegerQ[(#[[2]]#[[1]])/(#[[3]] #[[2]])]&][[All, 2]] (* Harvey P. Dale, Jul 26 2018 *)


CROSSREFS



KEYWORD

easy,nonn


AUTHOR



STATUS

approved



