login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158709 Primes p such that p + ceiling(p/2) is prime. 14
2, 3, 7, 11, 19, 31, 47, 59, 67, 71, 127, 131, 151, 167, 179, 211, 239, 307, 311, 347, 379, 431, 439, 467, 479, 547, 571, 587, 607, 619, 631, 647, 727, 739, 787, 811, 839, 859, 907, 911, 967, 991, 1039, 1091, 1231, 1259, 1319, 1399, 1427, 1471, 1511, 1531, 1559 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Or, 2 along with primes p such that Sum_{x=1..p} (1 - (-1)^x*x) is prime. - Juri-Stepan Gerasimov, Jul 14 2009

Apart from the first term, primes of the form 4*k-1 such that 6*k-1 is also prime. - Charles R Greathouse IV, Nov 09 2011

If both p and q are in A158709 and p + q == 2 (mod 4), then A006370(A006370(p + q)) = A006370((p + q)/2) = 3*(p + q)/2 + 1 is the sum of the two primes p+ceiling(p/2) and q+ceiling(q/2). - Roderick MacPhee, Feb 23 2018

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

MATHEMATICA

lst={}; Do[p=Prime[n]; If[PrimeQ[Ceiling[p/2]+p], AppendTo[lst, p]], {n, 6!}]; lst

Select[Prime@ Range@ 250, PrimeQ@ Ceiling[3#/2] &] (* Vincenzo Librandi, Apr 15 2013 and slightly modified by Robert G. Wilson v, Feb 26 2018 *)

PROG

(PARI) forprime(p=2, 1e4, if(isprime(p+ceil(p/2)), print1(p", "))) \\ Charles R Greathouse IV, Nov 09 2011

(PARI) print1(2); forprime(p=3, 1e4, if(p%4==3&&isprime(p\4*6+5), print1(", "p))) \\ Charles R Greathouse IV, Nov 09 2011

CROSSREFS

Cf. A158708.

Sequence in context: A079739 A210394 A211203 * A180422 A055502 A003173

Adjacent sequences:  A158706 A158707 A158708 * A158710 A158711 A158712

KEYWORD

nonn,easy

AUTHOR

Vladimir Joseph Stephan Orlovsky, Mar 24 2009

EXTENSIONS

Corrected by Charles R Greathouse IV, Mar 18 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 17 00:25 EST 2020. Contains 331976 sequences. (Running on oeis4.)