OFFSET
1,1
COMMENTS
Primes q such that 3*q+1 or 3*q+2 is prime. Agrees with A023208 except for initial term 2.
Essentially the same as A023208. - R. J. Mathar, Jul 05 2009
EXAMPLE
3 is in the sequence since 11 is prime and floor(11/3) = 3; 11 is not in the sequence since 11 = floor(34/3) = floor(35/3) and neither 34 nor 35 is prime.
MATHEMATICA
lst={}; Do[r=Prime[n]; If[PrimeQ[p=Floor[r/3]], AppendTo[lst, p]], {n, 6!}]; lst
Select[Floor[Prime[Range[350]]/3], PrimeQ] (* Harvey P. Dale, Aug 26 2013 *)
Select[Prime[Range[200]], AnyTrue[3#+{1, 2}, PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 07 2019 *)
PROG
(Magma) [ q: q in PrimesUpTo(800) | IsPrime(3*q+1) or IsPrime(3*q+2) ]; // Klaus Brockhaus, Jul 06 2009
(PARI) isA162338(n) = isprime(n) && (isprime(3*n+1) || isprime(3*n+2)) \\ Michael B. Porter, Jan 30 2010
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Joseph Stephan Orlovsky, Jul 01 2009
EXTENSIONS
Edited and listed terms verified by Klaus Brockhaus, Jul 06 2009
STATUS
approved