OFFSET
1,5
COMMENTS
Conjecture: (i) a(n) > 0 for all n > 2, i.e., 6*n-3 with n > 2 can be expressed as a sum of three terms from A230138. Moreover, for any integer n > 12, there are three distinct positive integers x, y, z with x + y + z = n such that 6*x-1, 6*y-1, 6*z-1 are primes in A230138.
(ii) For each integer n > 12, there are three distinct positive integers x, y, z with x + y + z = n such that 6*x-1, 6*y-1, 6*z-1 are among those primes p with p + 2 and 2*p + 9 also prime.
Note that part (i) of this conjecture implies that there are infinitely many primes in A230138.
Indices k such that a(m)>a(k) for all m>k, are (2, 10, 26, 334, 439, 544, 551, 684, ...). The only sequence which has the first 5 terms within the 3 lines of data is A212067. (Certainly a coincidence.) - M. F. Hasler, Oct 10 2013
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Zhi-Wei Sun, Conjectures involving primes and quadratic forms, preprint, arXiv:1211.1588.
EXAMPLE
a(10) = 1 since 10 = 2 + 3 + 5, and the three numbers 6*2-1=11, 6*3-1=17 and 6*5-1=29 are terms of A230138.
MATHEMATICA
SQ[n_]:=PrimeQ[6n-1]&&PrimeQ[6n+1]&&PrimeQ[12n-7]
a[n_]:=Sum[If[SQ[i]&&SQ[j]&&SQ[n-i-j], 1, 0], {i, 1, n/3}, {j, i, (n-i)/2}]
Table[a[n], {n, 1, 100}]
PROG
(PARI) ip(x)=isprime(6*x-1) && isprime(6*x+1) && isprime(12*x-7); a(n)=sum(x=1, n\3, sum(y=x, ip(x)*(n-x)\2, ip(y) && ip(n-x-y))) \\ - M. F. Hasler, Oct 10 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Oct 10 2013
STATUS
approved