login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A068307 From Goldbach problem: number of decompositions of n into a sum of three primes. 52
0, 0, 0, 0, 0, 1, 1, 1, 2, 1, 2, 2, 2, 1, 3, 2, 4, 2, 3, 2, 5, 2, 5, 3, 5, 3, 7, 3, 7, 2, 6, 3, 9, 2, 8, 4, 9, 4, 10, 2, 11, 3, 10, 4, 12, 3, 13, 4, 12, 5, 15, 4, 16, 3, 14, 5, 17, 3, 16, 4, 16, 6, 19, 3, 21, 5, 20, 6, 20, 2, 22, 5, 21, 6, 22, 5, 28, 5, 24, 7 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,9

COMMENTS

For even n > 2, a(n) = A061358(n-2). - Reinhard Zumkeller, Aug 08 2009

Vinogradov proved that every sufficiently large odd number is the sum of three primes. - T. D. Noe, Mar 27 2013

The two Helfgott papers show that every odd number greater than 5 is the sum of three primes (this is the Odd Goldbach Conjecture). - T. D. Noe, May 14 2013, N. J. A. Sloane, May 18 2013

LINKS

Robert G. Wilson v, Table of n, a(n) for n = 1..36000 (first 10000 terms from T. D. Noe)

H. A. Helfgott, Minor arcs for Goldbach's problem, arXiv:1205.5252 [math.NT], 2012.

H. A. Helfgott, Major arcs for Goldbach's theorem, arXiv:1305.2897 [math.NT], 2013.

H. A. Helfgott, The ternary Goldbach conjecture is true, arxiv:1312.7748 [math.NT], 2013.

H. A. Helfgott, The ternary Goldbach problem, arXiv:1404.2224 [math.NT], 2014.

Yannick Saouter, Checking the odd Goldbach conjecture up to 10^20, Math. Comp. 67 (222) (1998) 863-866.

Eric Weisstein's World of Mathematics, Vinogradov's Theorem

Wikipedia, Goldbach's conjecture.

FORMULA

a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} A010051(i) * A010051(k) * A010051(n-i-k). - Wesley Ivan Hurt, Mar 26 2019

a(n) = [x^n y^3] Product_{k>=1} 1/(1 - y*x^prime(k)). - Ilya Gutkovskiy, Apr 18 2019

EXAMPLE

a(6) = 1 because 6 = 2+2+2,

a(9) = 2 because 9 = 2+2+5 = 3+3+3,

a(15) = 3 because 15 = 2+2+11 = 3+5+7 = 5+5+5,

a(17) = 4 because 17 = 2+2+13 = 3+3+11 = 3+7+7 = 5+5+7.

- Zak Seidov, Jun 29 2017

MATHEMATICA

f[n_] := Block[{c = 0, lmt = PrimePi@ Floor[n/2], p, q}, Do[p = Prime@ i; q = Prime@ j; r = n - p - q; If[ PrimeQ@ r && r >= p, c++ ], {i, lmt}, {j, i}]; c]; Array[f, 91] (* Robert G. Wilson v, Apr 13 2008 *)

Table[Count[IntegerPartitions[n, {3}], _?(AllTrue[#, PrimeQ]&)], {n, 50}] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 10 2019 *)

PROG

(PARI) a(n)=my(s); forprime(p=(n+2)\3, n-4, forprime(q=(n-p+1)\2, min(n-p-2, p), if(isprime(n-p-q), s++))); s \\ Charles R Greathouse IV, Jun 29 2017

(Python)

from sympy import isprime, primerange, floor

def a(n):

    s=0

    for p in primerange(((n + 2)//3), n - 3):

        for q in primerange(((n - p + 1)//2), min(n - p - 2, p) + 1):

            if isprime(n - p - q): s+=1

    return s

print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jul 01 2017, after PARI code by Charles R Greathouse IV

CROSSREFS

Bisections: A045917, A054860. Cf. A002375, A007963, A061358, A059998.

First occurrence: A139321. Records: A139322.

Column k=3 of A117278.

Sequence in context: A105149 A355748 A295894 * A158946 A303428 A223853

Adjacent sequences:  A068304 A068305 A068306 * A068308 A068309 A068310

KEYWORD

easy,nonn

AUTHOR

Naohiro Nomoto, Feb 24 2002

EXTENSIONS

More terms from Vladeta Jovovic, Mar 10 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 6 04:36 EDT 2022. Contains 357261 sequences. (Running on oeis4.)