login
A054860
Number of ways of writing 2n+1 as p + q + r where p, q, r are primes with p <= q <= r.
7
0, 0, 0, 1, 2, 2, 2, 3, 4, 3, 5, 5, 5, 7, 7, 6, 9, 8, 9, 10, 11, 10, 12, 13, 12, 15, 16, 14, 17, 16, 16, 19, 21, 20, 20, 22, 21, 22, 28, 24, 25, 29, 27, 29, 33, 29, 33, 35, 34, 30, 38, 36, 35, 43, 38, 37, 47, 42, 43, 50, 46, 47, 53, 50, 45, 57, 54, 47, 62, 53, 49, 65, 59, 55, 68
OFFSET
0,5
COMMENTS
Every sufficiently large odd number is the sum of three primes (th. by Vinogradov, 1937). Goldbach's conjecture requires three ODD primes and then a(n) > 0 for n > 2 is weaker.
The unconditional theorem was proved by Helfgott (see link below). - T. D. Noe, May 15 2013
REFERENCES
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, appendix 3.
Wolfgang Schwarz, Einfuehrung in Methoden und Ergebnisse der Primzahltheorie, Bibliographisches Institut Mannheim, 1969, ch. 7.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 0..10000 (up to 1000 from T. D. Noe)
H. A. Helfgott, Major arcs for Goldbach's theorem, arXiv 1305.2897 [math.NT], May 14 2013.
EXAMPLE
7 = 2 + 2 + 3 so a(3) = 1;
9 = 2 + 2 + 5 = 3 + 3 + 3 so a(4) = 2;
11 = 2 + 2 + 7 = 3 + 3 + 5 so a(5) = 2.
MATHEMATICA
nn = 201; t = Table[0, {(nn + 1)/2}]; pMax = PrimePi[nn]; ps =
Prime[Range[pMax]]; Do[n = ps[[i]] + ps[[j]] + ps[[k]]; If[n <= nn &&
OddQ[n], t[[(n + 1)/2]]++], {i, pMax}, {j, i, pMax}, {k, j, pMax}]; t (* T. D. Noe, May 23 2017 *)
f[n_] := Length@ IntegerPartitions[2n +1, {3}, Prime@ Range@ PrimePi[2n -3]]; Array[f, 75, 0] (* Robert G. Wilson v, Jun 30 2017 *)
PROG
(PARI) first(n)=my(v=vector(n)); forprime(r=3, 2*n-3, v[r\2+2]++); forprime(p=3, (2*n+1)\3, forprime(q=p, (2*n+1-p)\2, forprime(r=q, 2*n+1-p-q, v[(p+q+r)\2]++))); concat(0, v) \\ Charles R Greathouse IV, May 25 2017
CROSSREFS
Sequence in context: A241952 A236919 A138304 * A098745 A029158 A241953
KEYWORD
nonn
AUTHOR
James A. Sellers, May 25 2000
STATUS
approved