login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054859
Smallest positive integer that can be expressed as the sum of consecutive primes in exactly n ways.
22
1, 2, 5, 41, 1151, 311, 34421, 218918, 3634531, 48205429, 1798467197, 12941709050, 166400805323, 6123584726269
OFFSET
0,2
COMMENTS
a(10)-a(12) found by Wilfred Whiteside in 2007. - Giovanni Resta, May 07 2020
REFERENCES
R. K. Guy, Unsolved Problems In Number Theory, C2.
LINKS
Leo Moser, Notes on number theory. III. On the sum of consecutive primes, Canad. Math. Bull. 6 (1963), pp. 159-161.
Carlos Rivera, Puzzle 46. Primes expressible as sum of consecutive primes in K ways, The Prime Puzzles and Problems Connection.
EXAMPLE
41 = 41 = 11+13+17 = 2+3+5+7+11+13, 41 is the smallest number expressible in 3 ways, so a(3)=41.
From Robert G. Wilson v, Feb 21 2011: (Start)
a(0) = 1 because 1 cannot be expressed as the sum of any set of consecutive primes,
a(1) = 2 because 2 is the first prime,
a(2) = 5 because 2+3 = 5,
a(4) = 1151 because 7+11+13+17+19+23+29+31+37+41+43+47+53+59+61+67+71+73+79+83+89+97+101 = 223+227+229+233+239 = 379+383+389 = 1151,
a(5) = 311 because 11+13+17+19+23+29+31+37+41+43+47 = 31+37+41+43+47+53+59 = 53+59+61+67+71 = 101+103+107 = 311,
a(6) = 34421 because 269+271+...+701+709 = 1429+1433+...+1567+1571 = 3793+3797+3803+3821+3823+3833+3847+3851+3853 = 4889+4903+4909+4919+4931+4933+4937 = 11467+11471+11483 = 34421,
a(7) = 218918 because 3301+3307+...+3767+3769 = 4561+4567+...+4951+4957 = 5623+5639+...+5881+5897 = 7691+7699+...+7933+7937 = 9851+9857+...+10067+10069 = 13619+13627+...+13723+13729 = 18199+18211+...+18287+18289,
a(8) = 3634531 because 313+317+...+7873+7877 = 977+983+...+7933+7937 = 31567+31573+...+32707+32713 = 70997+70999+...+71479+71483 = 73897+73907+...+74413+74419 = 172969+172973+...+173189+173191 = 519161+519193+...+519247+519257 = 3634531,
a(9) = 48205429 because 124291+124297+...+128747+128749 = 176303+176317+...+179453+179461 = 331537+331543+...+333383+333397 = 433577+433607+...+434933+434939 = 541061+541087+...+542141+542149 = 2536943+2536991+...+2537303+2537323 = 16068461+16068469+16068499 = 48205429, etc. (End)
From Giovanni Resta, May 07 2020: (Start)
The runs of primes corresponding to a(10)-a(13), in the format first prime (run length), are:
a(10) = 1798467197 (1), 599489047 (3), 51384499 (35), 41824483 (43), 14862469 (121), 2233859 (803), 1652909 (1083), 742243 (2371), 280591 (5683), 118297 (10073);
a(11) = 6470854519 (2), 2156951369 (6), 431390039 (30), 323542441 (40), 71896949 (180), 56266367 (230), 5574659 (2314), 4481189 (2874), 3547639 (3620), 1487399 (8366), 993197 (12024);
a(12) = 166400805323 (1), 55466935091 (3), 18488978293 (9), 3025468583 (55), 155650259 (1069), 135604109 (1227), 50227297 (3311), 29640257 (5605), 19365569 (8561), 6284627 (25655), 3188819 (46977), 429467 (127483);
a(13) = 6123584726269 (1), 360210866021 (17), 197534990813 (31), 124971116311 (49), 48217200953 (127), 40023427859 (153), 21188870723 (289), 13225879553 (463), 6166740911 (993), 3642804197 (1681), 2232410683 (2743), 992896649 (6167), 17062531 (311319). (End)
MATHEMATICA
lmt = 500000000; p = Prime@ Range@ PrimePi@ lmt; t = Table[0, {lmt}]; Do[s = 0; j = i; While[s = s + p[[j]]; s <= lmt, t[[s]]++; j++], {i, Length@ p}]; Table[ Position[t, n, 1, 1], {n, 0, 0}] (* Robert G. Wilson v, Feb 21 2011 *)
CROSSREFS
Sequence in context: A218057 A126469 A093433 * A076725 A059917 A255963
KEYWORD
nonn,hard,more
AUTHOR
Jud McCranie, May 25 2000
EXTENSIONS
a(10)-a(11) from Bert Dobbelaere, Apr 14 2020
a(12)-a(13) from Giovanni Resta, May 07 2020
STATUS
approved