login
A139321
First occurrence of n in A068307: least number k such that the number of decomposition of k into the sum of three primes is n.
6
1, 6, 9, 15, 17, 21, 31, 27, 35, 33, 39, 41, 45, 47, 55, 51, 53, 57, 242, 63, 67, 65, 71, 476, 79, 81, 578, 85, 77, 83, 99, 572, 512, 89, 97, 95, 103, 111, 101, 692, 1040, 632, 115, 107, 782, 129, 121, 113, 902, 141, 119, 842, 992, 125, 133, 147, 1520, 131, 159, 145
OFFSET
0,2
COMMENTS
Records (differs from A139322): 1, 6, 9, 15, 17, 21, 31, 35, 39, 41, 45, 47, 55, 57, 242, 476, 578, 692, 1040, 1520, 1898, 2162, 2480, 3536, 4004, 4034, 4526, 5456, 5918, 7010, 8804, 9740, 10106, 10262, 10412, 10622, 10772, 10952, 11462, 12362, 12452, 12512, 12560, 12662, 12902, ... .
LINKS
Robert G. Wilson v and T. D. Noe, Table of n, a(n) for n = 0..2500
MATHEMATICA
f[n_] := Block[{c = 0, lmt = PrimePi@ Floor[n/2], p, q}, Do[p = Prime@ i; q = Prime@ j; r = n - p - q; If[ PrimeQ@ r && r >= p, c++ ], {i, lmt}, {j, i}]; c]; t = Table[0, {1000}]; Do[a = f@n; If[t[[a]] == 0, t[[a]] = n; Print[{a, n}]], {n, 10^6}]
CROSSREFS
Cf. A000040, A068307. Records: A139322.
Sequence in context: A316022 A316023 A139322 * A210732 A316024 A316025
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Apr 13 2008
STATUS
approved