This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A059998 Number of different primes occurring when n is expressed as p1+q1+r1 = ... = pk+qk+rk where pk,qk,rk are primes with pk <= qk <= rk. 3
 0, 0, 0, 0, 0, 1, 2, 2, 3, 3, 4, 4, 3, 3, 5, 4, 6, 5, 5, 5, 7, 5, 8, 6, 7, 7, 9, 6, 8, 5, 8, 7, 10, 5, 11, 8, 10, 9, 10, 4, 12, 7, 11, 9, 13, 7, 14, 8, 13, 11, 15, 9, 14, 7, 14, 11, 16, 7, 15, 8, 15, 13, 17, 6, 18, 11, 17, 13, 17, 5, 19, 11, 18, 13, 20, 10, 21, 11, 20, 15, 20, 9, 22, 10, 21 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,7 COMMENTS Goldbach conjectured that every integer >5 is the sum of three primes. 6=2+2+2, 7=2+2+3, 8=2+3+3, 9=3+3+3=2+2+5,...... The largest possible value of a(n) is PrimePi(n)-1, which is frequently attained. - T. D. Noe, May 05 2008 LINKS T. D. Noe, Table of n, a(n) for n = 1..2000 FORMULA If n is of the form 2*(prime + 1) then a(n) is an even number. EXAMPLE n=9: 9 = 3+3+3 = 2+2+5, we can see 3 different primes. so a(9) = 3. MATHEMATICA a[n_] := Select[ Reverse /@ IntegerPartitions[n, {3}] , LessEqual @@ # && PrimeQ[#[[1]]] && PrimeQ[#[[2]]] && PrimeQ[#[[3]]] &] // Flatten // Union // Length; Table[a[n], {n, 1, 85}] (* Jean-François Alcover, Oct 03 2012 *) PROG (PARI) a(n)=my(v=List()); forprime(r=(n+2)\3, n-4, forprime(q=(n-r+1)\2, n-r-2, if(isprime(n-r-q), listput(v, r); listput(v, q); listput(v, n-r-q)))); #vecsort(Vec(v), , 8) \\ Charles R Greathouse IV, Jul 14 2013 CROSSREFS Sequence in context: A106747 A083447 A252489 * A234475 A036041 A252759 Adjacent sequences:  A059995 A059996 A059997 * A059999 A060000 A060001 KEYWORD easy,nonn,nice AUTHOR Naohiro Nomoto, Mar 10 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.