login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339731
Let G be the undirected graph with nodes {g_k, k > 0} such that for any k > 0, g_k is connected to g_{k+1} and g_{A064413(k)} is connected to g_{A064413(k+1)}; a(n) is the distance between g_1 and g_n.
4
0, 1, 2, 2, 3, 3, 4, 4, 3, 4, 5, 4, 5, 5, 4, 5, 6, 5, 6, 6, 5, 6, 7, 6, 7, 6, 7, 7, 8, 8, 8, 7, 6, 7, 8, 7, 8, 7, 6, 7, 8, 8, 9, 8, 8, 8, 9, 9, 9, 8, 7, 8, 9, 9, 9, 8, 7, 8, 9, 10, 10, 9, 10, 10, 10, 10, 10, 9, 8, 9, 10, 10, 10, 9, 10, 11, 11, 11, 11, 10, 10
OFFSET
1,3
LINKS
Dana G. Korssjoen, Biyao Li, Stefan Steinerberger, Raghavendra Tripathi, and Ruimin Zhang, Finding structure in sequences of real numbers via graph theory: a problem list, arXiv:2012.04625, Dec 08, 2020.
FORMULA
abs(a(n) - a(k)) <= abs(n-k) for any n, k > 0.
a(n) = A339733(n, 1).
PROG
(PARI) See Links section.
CROSSREFS
See A339695 for a similar sequence.
Sequence in context: A340320 A059998 A361384 * A234475 A339082 A329907
KEYWORD
nonn
AUTHOR
Rémy Sigrist, Dec 14 2020
STATUS
approved