login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339082
a(n) is the number m such that F(prime(m)) is the greatest prime Fibonacci divisor of F(n)^2 + 1 where F(n) is the n-th Fibonacci number, or 0 if no such prime factor exists.
2
2, 2, 3, 3, 4, 4, 3, 4, 5, 5, 6, 6, 5, 6, 7, 7, 3, 7, 7, 4, 9, 9, 4, 9, 9, 3, 10, 10, 2, 10, 10, 5, 4, 5, 5, 4, 6, 6, 0, 6, 14, 14, 3, 14, 15, 15, 4, 15, 15, 7, 4, 7, 7, 5, 2, 5, 5, 2, 2, 0, 4, 4, 6, 6, 4, 6, 9, 9, 0, 9, 9, 0, 3, 3, 5, 5, 3, 5, 5, 2, 23, 23, 7
OFFSET
1,1
COMMENTS
If a(n) > 0, then prime(a(n)) = A335568(n).
FORMULA
If A335568(n) = 0, then a(n) = 0, otherwise a(n) = A000720(A335568(n)).
EXAMPLE
a(15) = 7 because F(15)^2 + 1 = 610^2 + 1 = 372101 = 233*1597, 1597 = F(17) is the greatest prime Fibonacci divisor of 372101 and 17 is the 7th prime.
MAPLE
a:= proc(n) local i, F, m, t; F, m, t:=
[1, 2], 0, (<<0|1>, <1|1>>^n)[2, 1]^2+1;
for i from 3 while F[2]<=t do if isprime(F[2]) and
irem(t, F[2])=0 then m:=i fi; F:= [F[2], F[1]+F[2]]
od; numtheory[pi](m)
end:
seq(a(n), n=1..100); # Alois P. Heinz, Nov 25 2020
MATHEMATICA
a[n_] := Module[{i, F = {1, 2}, m = 0, t}, t = MatrixPower[{{0, 1}, {1, 1}}, n][[2, 1]]^2 + 1; For[i = 3, F[[2]] <= t, i++, If[PrimeQ[F[[2]]] && Mod[t, F[[2]]] == 0, m = i]; F = {F[[2]], F[[1]] + F[[2]]}]; PrimePi[m]];
Array[a, 100] (* Jean-François Alcover, Dec 01 2020, after Alois P. Heinz *)
CROSSREFS
Cf. A000040, A000045, A005478, A245306, A335568, A338762, A338794 (indices of the 0's).
Sequence in context: A361384 A339731 A234475 * A329907 A329958 A309969
KEYWORD
nonn
AUTHOR
Chai Wah Wu, Nov 24 2020
STATUS
approved