login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338794
Index k of Fibonacci numbers such that F(k)^2 + 1 has no Fibonacci prime factor, where F(k) is the k-th Fibonacci number.
5
39, 60, 69, 72, 99, 102, 105, 108, 111, 150, 165, 180, 192, 195, 198, 225, 228, 231, 240, 270, 279, 282, 309, 312, 315, 348, 351, 381, 399, 420, 441, 459, 462, 465, 489, 501, 522, 588, 591, 600, 615, 618, 642, 645, 660, 675, 702, 741, 759, 771, 810, 822, 825, 828
OFFSET
1,1
COMMENTS
Or numbers k such that A338762(k) = 0.
EXAMPLE
39 is in the sequence because F(39)^2 + 1 = 63245986^2 + 1 = 73*149*2221*2789*59369 with no Fibonacci prime factors.
38 is not in the sequence because F(38)^2 + 1 = 39088169^2 + 1 = 2*73*149*233*2221*135721. The numbers and 2, 233 are Fibonacci prime factors.
MAPLE
a:= proc(n) local F, m, t; F, m, t:=
[1, 2], 0, (<<0|1>, <1|1>>^n)[2, 1]^2+1;
while F[2]<=t do if isprime(F[2]) and irem(t, F[2])=0
then m:=F[2] fi; F:= [F[2], F[1]+F[2]]
od; m
end:
for n from 1 to 100 do :
if a(n)=0 then printf(`%d, `, n):else fi:
od: # program from Alois P. Heinz, adapted for the sequence. See A338762.
PROG
(PARI) isok(n) = {my(i=0, f=0, x=fibonacci(n)^2+1, m=0); while(f < x, i++; f = fibonacci(i); if (ispseudoprime(f) && (x%f) == 0, return (0)); ); return(1); } \\ Michel Marcus, Nov 13 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Nov 09 2020
STATUS
approved