login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230142
Numerator of 1/u_n(1/2), where polynomial u_n(x) is used to approximate x->sin(Pi*x)/Pi.
3
16, 256, 5632, 1048576, 80543744, 18185977856, 2823575044096, 4608812904349696, 1194823452775677952, 766890677854432919552, 298370458295691856838656, 184465173199612912007643136, 301475731054794304317414178816, 381273851270136749855228154609664
OFFSET
1,1
COMMENTS
Coefficients of u_n are given by the n-th row of A144846/A144847.
LINKS
FORMULA
limit_{n->infinity} 1/u_n(1/2) = Pi.
EXAMPLE
16/3, 256/75, 5632/1785, 1048576/333795, 80543744/25638459, 18185977856/5788790007, 2823575044096/898772045457 ... = A230142/A230143
MAPLE
u:= proc(n) option remember; local f, i, x; f:= unapply(simplify(sum('cat(a||(2*i+1)) *x^(2*i+1)', 'i'=0..n) ), x); unapply(subs(solve({f(1)=0, seq((D@@i)(f)(1)=`if`(i=1, -1, -(D@@i)(f)(0)), i=1..n)}, {seq(cat(a||(2*i+1)), i=0..n)}), sum('cat(a||(2*i+1)) *x^(2*i+1)', 'i'=0..n)), x) end: seq(numer(1/u(n)(1/2)), n=1..15);
MATHEMATICA
u[n_] := u[n] = Module[{f, i, x, a}, f = Function[x, Sum[a[2*i+1]*x^(2*i+1), {i, 0, n}]]; Function[x, Sum[a[2*i+1]*x^(2*i+1), {i, 0, n}] /. First @ Solve[Join[{f[1] == 0}, Table[Derivative[i][f][1] == If[i == 1, -1, -Derivative[i][f][0]], {i, 1, n}]], Table[a[2*i+1], {i, 0, n}]]]]; Table[Numerator[1/u[n][1/2]], {n, 1, 15}] (* Jean-François Alcover, Feb 13 2014, after Maple *)
CROSSREFS
Cf. A000796.
Sequence in context: A220175 A001025 A144318 * A247165 A204080 A223433
KEYWORD
nonn,frac
AUTHOR
Alois P. Heinz, Oct 10 2013
STATUS
approved