login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261653
Number of primes p < n such that n-p-1 and n+p+1 are both prime or both practical.
1
0, 0, 0, 0, 1, 0, 1, 2, 2, 3, 2, 3, 1, 2, 3, 5, 3, 3, 1, 4, 2, 4, 3, 5, 3, 3, 4, 4, 3, 4, 1, 3, 4, 5, 5, 7, 3, 1, 4, 6, 4, 7, 2, 4, 4, 5, 3, 8, 3, 4, 5, 6, 3, 6, 5, 6, 4, 4, 5, 9, 3, 2, 4, 7, 6, 10, 3, 6, 4, 6, 6, 10, 3, 3, 7, 7, 7, 9, 4, 6
OFFSET
1,8
COMMENTS
Conjecture: a(n) > 0 for all n > 6. Also, for any integer n > 2, there is a prime p < n such that n-(p-1) and n+(p-1) are both prime or both practical.
Note that 1 is the only odd practical number and 2 is the only even prime.
LINKS
G. Melfi, On two conjectures about practical numbers, J. Number Theory 56 (1996) 205-210 [MR96i:11106].
Zhi-Wei Sun, Conjectures involving primes and quadratic forms, arXiv:1211.1588 [math.NT], 2012-2015.
EXAMPLE
a(31) = 1 since 11, 31-11-1 = 19 and 31+11+1 = 43 are all prime.
a(38) = 17 since 17 is prime, and 38-17-1 = 20 and 38+17+1 = 56 are both practical.
MATHEMATICA
f[n_]:=FactorInteger[n]
Pow[n_, i_]:=Part[Part[f[n], i], 1]^(Part[Part[f[n], i], 2])
Con[n_]:=Sum[If[Part[Part[f[n], s+1], 1]<=DivisorSigma[1, Product[Pow[n, i], {i, 1, s}]]+1, 0, 1], {s, 1, Length[f[n]]-1}]
pr[n_]:=n>0&&(n<3||Mod[n, 2]+Con[n]==0)
p[n_]:=Prime[n]
Do[r=0; Do[If[(PrimeQ[n-p[k]-1]&&PrimeQ[n+p[k]+1])||(pr[n-p[k]-1]&&pr[n+p[k]+1]), r=r+1], {k, 1, PrimePi[n-1]}]; Print[n, " ", r]; Continue, {n, 1, 80}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Aug 28 2015
STATUS
approved