The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A059169 Number of partitions of n into 3 parts which form the sides of a nondegenerate isosceles triangle. 23
 0, 0, 1, 0, 1, 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4, 4, 5, 4, 5, 5, 6, 5, 6, 6, 7, 6, 7, 7, 8, 7, 8, 8, 9, 8, 9, 9, 10, 9, 10, 10, 11, 10, 11, 11, 12, 11, 12, 12, 13, 12, 13, 13, 14, 13, 14, 14, 15, 14, 15, 15, 16, 15, 16, 16, 17, 16, 17, 17, 18, 17, 18, 18, 19, 18, 19, 19, 20, 19, 20, 20 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,7 COMMENTS Also number of 0's in n-th row of triangle in A071026. - Hans Havermann, May 26 2002 Exponent of 2 in factorization of A030436(n-1) and A026655(n-1). First differences of A001971. - Ralf Stephan, Mar 21 2004 Conjecture: this is 0 followed by A026922. - R. J. Mathar, Oct 05 2008 [See the G.f. given there by Michael Somos and the one given below for the proof. - Wolfdieter Lang, May 10 2017] a(n+1) is for n >= 0 the number of integers k in the left sided open interval ((n+1)/4, floor(n/2)]. This is needed for the number of zeros of Chebyshev S polynomials in the open interval (-sqrt(2), sqrt(2)) given in A285869. - Wolfdieter Lang, May 10 2017 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1). FORMULA a(2*n + 2) = a(2*n - 1) = A004526(n). a(n) = A005044(n) - A005044(n-6). a(n) = a(n-1) + a(n-4) - a(n-5). G.f.: x^3*(1-x+x^2)/(1-x-x^4+x^5). - Vladeta Jovovic, Dec 29 2001. The g.f. can also be written as x^3 * (1 + x^3) / ((1 - x^2) * (1 - x^4)). - Michael Somos, May 05 2015 a(n) = C(a(n-1), a(n-2)) - (-1)^n*C(a(n-2), a(n-3)), with a(1) = 0, a(2) = 0, a(3) = 1. - Paolo P. Lava, Feb 25 2008 a(n) = -1/8 - (1/8 + (1/8)*i)*i^(n-1) + (3/8)*(-1)^(n-1) + (1/4)*(n-1) - (1/8 - (1/8)*i)*(-i)^(n-1), with n >= 0 and I = sqrt(-1). - Paolo P. Lava, Oct 03 2008 Euler transform of length 6 sequence [ 0, 1, 1, 1, 0, -1]. - Michael Somos, Oct 14 2008 a(n) = -a(3 - n) for all n in Z. - Michael Somos. Oct 14 2008 a(n) = abs(floor((n-1)*(-1)^n/4)). - Wesley Ivan Hurt, Oct 22 2013 a(n) = abs(A178804(n+1) - A178804(n)). - Reinhard Zumkeller, Nov 15 2014 a(n) = floor(n/2) - floor(n/4) - (1 if n even). - David Pasino, Jun 17 2016 E.g.f.: (4 - sin(x) - cos(x) + x*sinh(x) + (x - 3)*cosh(x))/4. - Ilya Gutkovskiy, Jun 21 2016 a(n) = floor((n-1)/2) - floor(n/4), n >= 0 (from the preceding a(n) formula). - Wolfdieter Lang, May 08 2017 a(n) = (2*n - 3 - 2*cos(n*Pi/2) - 3*cos(n*Pi) - 2*sin(n*Pi/2))/8. - Wesley Ivan Hurt, Oct 01 2017 a(n) = Sum_{i=1..floor((n-1)/2)} (n-i-1) mod 2. - Wesley Ivan Hurt, Nov 17 2017 EXAMPLE Consider the number 13. The following partitions give a nondegenerate triangle: 4 4 5; 3 5 5; 1 6 6; 2 5 6; 3 4 6. Since the first three partitions represent isosceles triangles, we have A059169(13) = 3. G.f. = x^3 + x^5 + x^6 + 2*x^7 + x^8 + 2*x^9 + 2*x^10 + 3*x^11 + 2*x^12 + ... MAPLE a := 0: a := 0: a := 1: a := 0: a := 1: for n from 6 to 300 do a[n] := a[n-1] + a[n-4] - a[n-5]: end do: seq(a[n], n=1..82); a := n -> A005044(n) - A005044(n-6): A005044 := n-> floor((1/48)*(n^2 + 3*n + 21 + (-1)^(n-1)*3*n)): seq(a(n), n = 1..82); # Johannes W. Meijer, Oct 10 2013 MATHEMATICA CoefficientList[Series[x^2 (1 - x + x^2)/(1 - x - x^4 + x^5), {x, 0, 100}], x] (* Vincenzo Librandi, Aug 15 2013 *) LinearRecurrence[{1, 0, 0, 1, -1}, {0, 0, 1, 0, 1}, 100] (* Harvey P. Dale, Feb 09 2015 *) a[ n_] := Quotient[ n - 1, 2] - Quotient[ n, 4]; (* Michael Somos, May 05 2015 *) PROG (PARI) {a(n) = (n - 1) \ 2 - (n \ 4)}; /* Michael Somos, Oct 14 2008 */ (PARI) {a(n) = if( n<1, -a(3 - n), polcoeff( x^3 * (1 - x + x^2) / (1 - x - x^4 + x^5) + x * O(x^n), n))}; /* Michael Somos, Oct 14 2008 */ (Haskell) a059169 n = a059169_list !! (n-1) a059169_list = map abs \$ zipWith (-) (tail a178804_list) a178804_list -- Reinhard Zumkeller, Nov 15 2014 (MAGMA) [Floor((n-1)/2) - Floor(n/4): n in [1..80]]; // G. C. Greubel, Mar 08 2018 CROSSREFS Essentially the same as A008624. Cf. A178804. Sequence in context: A319688 A033922 A008624 * A026922 A178696 A161090 Adjacent sequences:  A059166 A059167 A059168 * A059170 A059171 A059172 KEYWORD nonn,easy,changed AUTHOR Floor van Lamoen, Jan 13 2001 EXTENSIONS More terms from Sascha Kurz, Mar 25 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 12 10:58 EDT 2021. Contains 344947 sequences. (Running on oeis4.)