login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033922
Base-2 digital convolution sequence.
4
1, 1, 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 5, 6, 6, 7, 6, 7, 7, 8, 2, 3, 3, 4, 3, 4, 4, 5, 4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5
OFFSET
0,4
COMMENTS
Definition: a(0) = 1; for n > 0, let the base-2 representation of n be 2^k_1 + ... + 2^k_i, then a(n) = a(k_1) + ... + a(k_i).
The sequence can be constructed as follows. Let r(n)=[x(1),x(2),...,x(2^n)] denote a run of 2^n elements. Then r(n+1) is a run of length 2^(n+1) defined as the concatenation of r(n) and [x(1)+x(n), x(2)+x(n), ..., x(2^n)+x(n)]. Letting x(1)=0 and x(2)=1 we get r(1)=[0,1], r(2)=[0, 1, 1, 2], r(3)=[0, 1, 1, 2, 1, 2, 2, 3], r(4)=[0, 1, 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4, 4, 5], etc. Replacing the leading zero by 1 in r(infinity) we get A033922. - Benoit Cloitre, Jan 10 2013
EXAMPLE
For example, 6 = 2^2 + 2^1, so a(6) = a(2) + a(1) = 2.
MAPLE
a:= proc(n) option remember; local c, m, t; if n=0 then 1 else m:= n; c:=0; for t from 0 while m<>0 do c:= c+ `if`(irem(m, 2, 'm')=1, a(t), 0) od; c fi end: seq(a(n), n=0..120); # Alois P. Heinz, Jul 13 2011
PROG
(PARI) al(n)=local(v, k, e); v=vector(n+1); v[1]=1; for(m=1, n, k=m; e=0; while(k>0, if(k%2, v[m+1]+=v[e+1]); e++; k\=2)); v /* Benoit Cloitre, Jan 10 2013 */
(PARI) /* to compute quickly 2^m terms of the sequence */ m=10; v=[0, 1]; for(n=2, m, v=concat(v, vector(2^n/2, i, v[i]+v[n]))); a(n)=if(n<2, 1, v[n]) /* Benoit Cloitre, Jan 16 2013 */
CROSSREFS
Cf. A033639, A014221 (n such that a(n)=1), A206774 (first differences).
Sequence in context: A367758 A358370 A319688 * A008624 A059169 A026922
KEYWORD
nonn,base
EXTENSIONS
Edited by Franklin T. Adams-Watters, Jul 13 2011
STATUS
approved