Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #38 Apr 13 2021 23:32:00
%S 1,1,1,2,1,2,2,3,2,3,3,4,3,4,4,5,1,2,2,3,2,3,3,4,3,4,4,5,4,5,5,6,2,3,
%T 3,4,3,4,4,5,4,5,5,6,5,6,6,7,3,4,4,5,4,5,5,6,5,6,6,7,6,7,7,8,2,3,3,4,
%U 3,4,4,5,4,5,5,6,5,6,6,7,3,4,4,5,4,5
%N Base-2 digital convolution sequence.
%C Definition: a(0) = 1; for n > 0, let the base-2 representation of n be 2^k_1 + ... + 2^k_i, then a(n) = a(k_1) + ... + a(k_i).
%C The sequence can be constructed as follows. Let r(n)=[x(1),x(2),...,x(2^n)] denote a run of 2^n elements. Then r(n+1) is a run of length 2^(n+1) defined as the concatenation of r(n) and [x(1)+x(n), x(2)+x(n), ..., x(2^n)+x(n)]. Letting x(1)=0 and x(2)=1 we get r(1)=[0,1], r(2)=[0, 1, 1, 2], r(3)=[0, 1, 1, 2, 1, 2, 2, 3], r(4)=[0, 1, 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4, 4, 5], etc. Replacing the leading zero by 1 in r(infinity) we get A033922. - _Benoit Cloitre_, Jan 10 2013
%H Alois P. Heinz, <a href="/A033922/b033922.txt">Table of n, a(n) for n = 0..10000</a>
%H Benoit Cloitre, <a href="/A033922/a033922.png">Plot of a(n) for n=1 up to 100000</a>
%e For example, 6 = 2^2 + 2^1, so a(6) = a(2) + a(1) = 2.
%p a:= proc(n) option remember; local c, m, t; if n=0 then 1 else m:= n; c:=0; for t from 0 while m<>0 do c:= c+ `if`(irem(m, 2, 'm')=1, a(t), 0) od; c fi end: seq(a(n), n=0..120); # _Alois P. Heinz_, Jul 13 2011
%o (PARI) al(n)=local(v,k,e);v=vector(n+1);v[1]=1;for(m=1,n,k=m;e=0;while(k>0,if(k%2,v[m+1]+=v[e+1]);e++;k\=2));v /* _Benoit Cloitre_, Jan 10 2013 */
%o (PARI) /* to compute quickly 2^m terms of the sequence */ m=10;v=[0,1];for(n=2,m,v=concat(v,vector(2^n/2,i,v[i]+v[n])));a(n)=if(n<2,1,v[n]) /* _Benoit Cloitre_, Jan 16 2013 */
%Y Cf. A033639, A014221 (n such that a(n)=1), A206774 (first differences).
%K nonn,base
%O 0,4
%A _David W. Wilson_
%E Edited by _Franklin T. Adams-Watters_, Jul 13 2011