OFFSET
0,5
COMMENTS
Molien series of 2-dimensional representation of group of order 16 over GF(3).
REFERENCES
D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 107.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
FORMULA
From Reinhard Zumkeller, Aug 05 2005: (Start)
a(n) = floor(n/4) + ((n mod 2 + 1 - floor((n mod 4)/3)) mod 2).
a(n) = (3 + 3*(-1)^n + (1-i)*(-i)^n + (1+i)*i^n + 2*n) / 8 where i = sqrt(-1). - Colin Barker, Oct 15 2015
a(n) = (2*n+3+2*cos(n*Pi/2)+3*cos(n*Pi)-2*sin(n*Pi/2))/8. - Wesley Ivan Hurt, Oct 01 2017
E.g.f.: (cos(x) + (3 + x)*cosh(x) - sin(x) + x*sinh(x))/4. - Stefano Spezia, Jan 03 2023
MAPLE
f := x -> (1+x^3)/((1-x^2)*(1-x^4)): seq(coeff(series(f(x), x, n+1), x, n), n=0..64);
a := n -> floor(n/4) + ((n mod 2 + 1 - floor((n mod 4)/3)) mod 2): seq(a(n), n=0..64); # Johannes W. Meijer, Oct 08 2013
MATHEMATICA
CoefficientList[Series[(1 + x^3) / (1 - x^2) / (1 - x^4), {x, 0, 70}], x] (* Vincenzo Librandi, Aug 15 2013 *)
LinearRecurrence[{1, 0, 0, 1, -1}, {1, 0, 1, 1, 2}, 70] (* Harvey P. Dale, Sep 27 2024 *)
PROG
(PARI) a(n) = (3 + 3*(-1)^n + (1-I)*(-I)^n + (1+I)*I^n + 2*n) / 8 \\ Colin Barker, Oct 15 2015
(PARI) my(x='x+O('x^100)); Vec((1+x^3)/((1-x^2)*(1-x^4))) \\ Altug Alkan, Dec 24 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Replaced x^2 three times with x in the generating function (un-aerated). - R. J. Mathar, Oct 23 2008
STATUS
approved