login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008624
Expansion of g.f. (1 + x^3)/((1 - x^2)*(1 - x^4)) = (1 - x + x^2)/((1 + x)*(1 - x)^2*(1 + x^2)).
6
1, 0, 1, 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4, 4, 5, 4, 5, 5, 6, 5, 6, 6, 7, 6, 7, 7, 8, 7, 8, 8, 9, 8, 9, 9, 10, 9, 10, 10, 11, 10, 11, 11, 12, 11, 12, 12, 13, 12, 13, 13, 14, 13, 14, 14, 15, 14, 15, 15, 16, 15, 16, 16, 17
OFFSET
0,5
COMMENTS
Molien series of 2-dimensional representation of group of order 16 over GF(3).
REFERENCES
D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 107.
FORMULA
From Reinhard Zumkeller, Aug 05 2005: (Start)
a(n) = floor(n/4) + ((n mod 2 + 1 - floor((n mod 4)/3)) mod 2).
a(n) = A110654(A028242(n)). (End)
a(n) = (3 + 3*(-1)^n + (1-i)*(-i)^n + (1+i)*i^n + 2*n) / 8 where i = sqrt(-1). - Colin Barker, Oct 15 2015
a(n) = (2*n+3+2*cos(n*Pi/2)+3*cos(n*Pi)-2*sin(n*Pi/2))/8. - Wesley Ivan Hurt, Oct 01 2017
E.g.f.: (cos(x) + (3 + x)*cosh(x) - sin(x) + x*sinh(x))/4. - Stefano Spezia, Jan 03 2023
MAPLE
f := x -> (1+x^3)/((1-x^2)*(1-x^4)): seq(coeff(series(f(x), x, n+1), x, n), n=0..64);
a := n -> floor(n/4) + ((n mod 2 + 1 - floor((n mod 4)/3)) mod 2): seq(a(n), n=0..64); # Johannes W. Meijer, Oct 08 2013
MATHEMATICA
CoefficientList[Series[(1 + x^3) / (1 - x^2) / (1 - x^4), {x, 0, 70}], x] (* Vincenzo Librandi, Aug 15 2013 *)
LinearRecurrence[{1, 0, 0, 1, -1}, {1, 0, 1, 1, 2}, 70] (* Harvey P. Dale, Sep 27 2024 *)
PROG
(PARI) a(n) = (3 + 3*(-1)^n + (1-I)*(-I)^n + (1+I)*I^n + 2*n) / 8 \\ Colin Barker, Oct 15 2015
(PARI) my(x='x+O('x^100)); Vec((1+x^3)/((1-x^2)*(1-x^4))) \\ Altug Alkan, Dec 24 2015
CROSSREFS
Essentially the same as A059169.
Sequence in context: A358370 A319688 A033922 * A059169 A026922 A178696
KEYWORD
nonn,easy
EXTENSIONS
Replaced x^2 three times with x in the generating function (un-aerated). - R. J. Mathar, Oct 23 2008
STATUS
approved